Page 234 - Veterinary Laser Therapy in Small Animal Practice
P. 234

220                            Veterinary Laser Therapy in Small Animal Practice


                       photodynamic therapy. Lasers Med Sci, 2003. 18(1): pp.   200.  Stephens, B.J. and L. Ramball Jones. Tissue optics.
                       51–5.                                              In: Hamblin, M., T. Agrawal, and M. de Sousa (eds)
                     185.  Nussbaum, E.L., L. Lilge, and T. Mazzulli. Effects of   Handbook of Low-Level Laser Therapy. 2016, Pan Stanford
                       low-level laser therapy (LLLT) of 810 nm upon in vitro   Publishing, Singapore, pp. 67–86.
                       growth of bacteria: relevance of irradiance and radiant   201.  Hashmi, J.T., et al. Effect of pulsing in low-level light
                       exposure. J Clin Laser Med Surg, 2003. 21(5): pp. 283–90.  therapy. Lasers Surg Med, 2010. 42(6): pp. 450–66.
                     186.  Pereira, P.R., et al. Effects of low intensity laser in in   202.  Mbene, A.B., N.N. Houreld, and H. Abrahamse. DNA
                       vitro bacterial culture and in vivo infected wounds. Rev   damage after phototherapy in wounded fibroblast cells
                       Col Bras Cir, 2014. 41(1): pp. 49–55.              irradiated with 16 J/cm(2). J Photochem Photobiol B, 2009.
                     187.  Bayat, M., M.M. Vasheghani, and N. Razavi. Effect   94(2): pp. 131–7.
                       of low-level helium-neon laser therapy on the healing of   203.  Karu, T.I., L.V. Pyatibrat, and T.P. Ryabykh.
                       third-degree burns in rats. J Photochem Photobiol B, 2006.   Nonmonotonic behavior of the dose dependence of the
                       83(2): pp. 87–93.                                  radiation effect on cells in vitro exposed to pulsed laser
                     188.  Kaya, G.S., et al. The use of 808-nm light therapy to   radiation at lambda = 820 nm. Lasers Surg Med, 1997.
                       treat experimental chronic osteomyelitis induced in rats   21(5): pp. 485–92.
                       by methicillin-resistant Staphylococcus aureus. Photomed   204.  Prado, R.P., et al. Experimental model for low level
                       Laser Surg, 2011. 29(6): pp. 405–12.               laser therapy on ischemic random skin flap in rats. Acta
                     189.  Krespi, Y.P., et al. Laser disruption and killing of   Cir Bras, 2006. 21(4): pp. 258–62.
                       methicillin-resistant Staphylococcus aureus biofilms. Am J   205.  Carvalho, R.L., et al. Effects of low-level laser therapy
                       Otolaryngol, 2011. 32(3): pp. 198–202.             on pain and scar formation after inguinal herniation
                     190.  Silva, D.C., et al. Low level laser therapy (AlGaInP)   surgery: a randomized controlled single-blind study.
                       applied at 5J/cm2 reduces the proliferation of     Photomed Laser Surg, 2010. 28(3): pp. 417–22.
                       Staphylococcus aureus MRSA in infected wounds and   206.  Olivieri, L., et al. Efficacy of low-level laser therapy on
                       intact skin of rats. An Bras Dermatol, 2013. 88(1): pp.   hair regrowth in dogs with noninflammatory alopecia: a
                       50–5.                                              pilot study. Vet Dermatol, 2015. 26(1): pp. 35–9, e11.
                     191.  Manevitch, Z., et al. Direct antifungal effect   207.  da Silva, E.B., et al. Macro and microscopic analysis
                       of femtosecond laser on Trichophyton rubrum        of island skin grafts after low-level laser therapy. Rev Col
                       onychomycosis. Photochem Photobiol, 2010. 86(2): pp.   Bras Cir, 2013. 40(1): pp. 44–8.
                       476–9.                                           208.  Kubota, J. Effects of diode laser therapy on blood flow
                     192.  Araujo, B.F., et al. Effects of low-level laser therapy,   in axial pattern flaps in the rat model. Lasers Med Sci,
                       660 nm, in experimental septic arthritis. ISRN Rheumatol,   2002. 17(3): pp. 146–53.
                       2013. 2013: p. 341832.                           209.  Pinfildi, C.E., et al. Effect of low-level laser therapy on
                     193.  Lipovsky, A., et al. Visible light-induced killing of   mast cells in viability of the transverse rectus abdominis
                       bacteria as a function of wavelength: implication for   musculocutaneous flap. Photomed Laser Surg, 2009. 27(2):
                       wound healing. Lasers Surg Med, 2010. 42(6): pp. 467–72.  pp. 337–43.
                     194.  Keijzer, M., et al. Light distributions in artery tissue:   210.  Pinfildi, C.E., et al. What is better in TRAM flap
                       Monte Carlo simulations for finite-diameter laser beams.   survival: LLLT single or multi-irradiation? Lasers Med Sci,
                       Lasers Surg Med, 1989. 9(2): pp. 148–54.           2013. 28(3): pp. 755–61.
                     195.  Firbank, M., et al. Measurement of the optical   211.  Kubota, J. Defocused diode laser therapy (830 nm) in
                       properties of the skull in the wavelength range 650–950   the treatment of unresponsive skin ulcers: a preliminary
                       nm. Phys Med Biol, 1993. 38(4): pp. 503–10.        trial. J Cosmet Laser Ther, 2004. 6(2): pp. 96–102.
                     196.  Beek, J.F., et al. The optical properties of lung as a   212.  Dantas, M.D., et al. Improvement of dermal burn
                       function of respiration. Phys Med Biol, 1997. 42(11): pp.   healing by combining sodium alginate/chitosan-based
                       2263–72.                                           films and low level laser therapy. J Photochem Photobiol B,
                     197.  Ma, X., et al. Bulk optical parameters of porcine skin   2011. 105(1): pp. 51–9.
                       dermis at eight wavelengths from 325 to 1557 nm. Opt   213.  Castro, B., et al. Development and preclinical
                       Lett, 2005. 30(4): pp. 412–4.                      evaluation of a new galactomannan-based dressing
                     198.  Jacques, S.L. and B.W. Pogue. Tutorial on diffuse light   with antioxidant properties for wound healing. Histol
                       transport. J Biomed Opt, 2008. 13(4): p. 041302.   Histopathol, 2015. 30(12): pp. 1499–512.
                     199.  Hall, G., et al. Goniometric measurements of thick   214.  Balasch, J., et al. Case report on the treatment of
                       tissue using Monte Carlo simulations to obtain the single   surgically debrided deep wounds with a new antioxidant
                       scattering anisotropy coefficient. Biomed Opt Express,   wound dressing in two dogs. Adv Anim Vet Sci, 2016. 4(7):
                       2012. 3(11): pp. 2707–19.                          pp. 389–393.









         REDONDO PRINT (4-COL BLEED).indd   220                                                                        08/08/2019   09:51
   229   230   231   232   233   234   235   236   237   238   239