Page 43 - Avian Virology: Current Research and Future Trends
P. 43

36  |  Perez et al.
          Pedersen, J.C. (2014). Hemagglutination-inhibition assay for influenza   RNA-transporting complex. PLOS ONE  9, e90957. https://doi.
            virus subtype identification and the detection and quantitation of serum   org/10.1371/journal.pone.0090957
            antibodies to influenza virus. Methods Mol. Biol. 1161, 11–25. https://  Perkins, L.E., and Swayne, D.E. (2001). Pathobiology of A/chicken/Hong
            doi.org/10.1007/978-1-4939-0758-8_2                    Kong/220/97 (H5N1) avian influenza virus in seven gallinaceous
          Peiris, J.S., Poon, L.M., Nicholls, J.M., and Guan, Y. (2009). The role of   species. Vet. Pathol. 38, 149–164. https://doi.org/10.1354/vp.38-2-149
            influenza virus gene constellation and viral morphology on cytokine   Perkins, L.E., and Swayne, D.E. (2002a). Pathogenicity of a Hong
            induction, pathogenesis, and viral virulence. Hong Kong Med. J. 15   Kong-origin H5N1 highly pathogenic avian influenza virus for emus,
            (Suppl. 3), 21–23.                                     geese, ducks, and pigeons. Avian Dis. 46, 53–63. https://doi.org/10.163
          Pena, L., Vincent, A.L., Loving, C.L., Henningson, J.N., Lager, K.M., Li,   7/0005-2086(2002)046[0053:POAHKO]2.0.CO;2
            W., and Perez, D.R. (2012a). Strain-dependent effects of PB1-F2 of   Perkins, L.E., and Swayne, D.E. (2002b). Susceptibility of laughing gulls
            triple-reassortant H3N2 influenza viruses in swine. J. Gen. Virol.  93,   (Larus atricilla) to H5N1 and H5N3 highly pathogenic avian influenza
            2204–2214.                                             viruses. Avian Dis. 46, 877–885. https://doi.org/10.1637/0005-2086(2
          Pena, L., Vincent, A.L., Loving, C.L., Henningson, J.N., Lager, K.M.,   002)046[0877:SOLGLA]2.0.CO;2
            Lorusso, A., and  Perez, D.R. (2012b).  Restored  PB1-F2 in the  2009   Perkins, L.E., and Swayne, D.E. (2003). Varied pathogenicity of a Hong
            pandemic H1N1 influenza virus has minimal effects in swine. J. Virol. 86,   Kong-origin H5N1 avian influenza virus in four passerine species and
            5523–5532. https://doi.org/10.1128/JVI.00134-12        budgerigars. Vet. Pathol. 40, 14–24.
          Perales,  B.,  and  Ortín,  J.  (1997).  The  influenza  A  virus  PB2  polymerase   Perroncito, E. (1878). Epizoozia tifoide nei gallinacei. Annali. Accad. Agri.
            subunit is required for the replication of viral RNA. J. Virol. 71, 1381–  Torino. 21, 87–126.
            1385.                                               Philbin, V.J., Iqbal, M., Boyd, Y., Goodchild, M.J., Beal, R.K., Bumstead, N.,
          Perales, B., de la Luna, S., Palacios, I., and Ortín, J. (1996). Mutational   Young, J., and Smith, A.L. (2005). Identification and characterization
            analysis identifies functional domains in the influenza A virus PB2   of a functional, alternatively spliced Toll-like receptor 7 (TLR7) and
            polymerase subunit. J. Virol. 70, 1678–1686.           genomic disruption of TLR8 in chickens. Immunology 114, 507–521.
          Perales, B., Sanz-Ezquerro, J.J., Gastaminza, P., Ortega, J., Santarén, J.F.,   Pichlmair,  A.,  Lassnig,  C.,  Eberle,  C.A.,  Górna,  M.W.,  Baumann,  C.L.,
            Ortín, J., and Nieto, A. (2000). The replication activity of influenza   Burkard, T.R., Bürckstümmer, T., Stefanovic, A., Krieger, S., Bennett, K.L.,
            virus polymerase is linked to the capacity of the PA subunit to induce   et al. (2011). IFIT1 is an antiviral protein that recognizes 5′-triphosphate
            proteolysis. J. Virol. 74, 1307–1312.                  RNA. Nat. Immunol. 12, 624–630. https://doi.org/10.1038/ni.2048
          Pereda, A.J., Uhart, M., Perez, A.A., Zaccagnini, M.E., La Sala, L., Decarre,   Pielak, R.M., and Chou, J.J. (2011). Influenza M2 proton channels.
            J., Goijman, A., Solari, L., Suarez, R., Craig, M.I., et al. (2008). Avian   Biochim. Biophys. Acta  1808, 522–529. https://doi.org/10.1016/j.
            influenza virus isolated in wild waterfowl in Argentina: evidence of a   bbamem.2010.04.015
            potentially unique phylogenetic lineage in South America. Virology 378,   Pillai, S.P., Pantin-Jackwood, M., Yassine, H.M., Saif, Y.M., and Lee, C.W.
            363–370. https://doi.org/10.1016/j.virol.2008.06.010   (2010). The high susceptibility of turkeys to influenza viruses of different
          Perez, D.R. (2017). Reverse Genetics of RNA Viruses Methods and   origins implies their importance as potential intermediate hosts. Avian
            Protocols (Humana Press, Springer, New York).          Dis. 54 (Suppl. 1), 522–526. https://doi.org/10.1637/8770-03310
          Perez, D.R., and de Wit, J.J.S. (2016). Low-pathogenicity avian influenza. In   9-Review.1
            Animal Influenza, D. Swayne, ed. (John Wiley & Sons, Inc., Ames, IA),   Pinto, L.H., Holsinger, L.J., and Lamb, R.A. (1992). Influenza virus M2
            pp. 271–301.                                           protein has ion channel activity. Cell 69, 517–528.
          Pérez, D.R., and Donis, R.O. (1995). A 48-amino-acid region of influenza   Pleschka, S., Wolff, T., Ehrhardt, C., Hobom, G., Planz, O., Rapp, U.R., and
            A virus PB1 protein is sufficient for complex formation with PA. J. Virol.   Ludwig, S. (2001). Influenza virus propagation is impaired by inhibition
            69, 6932–6939.                                         of the Raf/MEK/ERK signalling cascade. Nat. Cell Biol. 3, 301–305.
          Perez, D.R., and Donis, R.O. (2001). Functional analysis of PA binding by   https://doi.org/10.1038/35060098
            influenza a virus PB1: effects on polymerase activity and viral infectivity.   Plotch, S.J., and Krug, R.M. (1977). Influenza virion transcriptase: synthesis
            J. Virol. 75, 8127–8136.                               in vitro of large, polyadenylic acid-containing complementary RNA. J.
          Perez, D.R., Lim, W., Seiler, J.P., Yi, G., Peiris, M., Shortridge, K.F., and   Virol. 21, 24–34.
            Webster, R.G. (2003a). Role of quail in the interspecies transmission of   Plotch, S.J., Bouloy, M., Ulmanen, I., and Krug, R.M. (1981). A unique
            H9 influenza A viruses: molecular changes on HA that correspond to   cap(m7GpppXm)-dependent influenza virion endonuclease cleaves
            adaptation from ducks to chickens. J. Virol. 77, 3148–3156.  capped  RNAs  to  generate the  primers  that  initiate  viral  RNA
          Perez, D.R., Webby, R.J., Hoffmann, E., and Webster, R.G. (2003b).   transcription. Cell 23, 847–858.
            Land-based birds as potential disseminators of avian/mammalian   Ponimaskin, E., and Schmidt, M.F. (1998). Domain-structure of cytoplasmic
            reassortant influenza A viruses. Avian Dis. 47, 1114–1117.  border region is main determinant for palmitoylation of influenza virus
          Perez, D.R., Nazarian, S.H., McFadden, G., and Gilmore, M.S. (2005).   hemagglutinin (H7). Virology 249, 325–335.
            Miscellaneous threats: Highly pathogenic avian influenza, and novel   Poole, E., Elton, D., Medcalf, L., and Digard, P. (2004). Functional
            bio-engineered organisms. In Biodefense Principles and Pathogens, M.   domains of the influenza A virus PB2 protein: identification of NP- and
            Bronze, and R.A. Greenfield, eds. (Taylor and Francis, Norfolk).   PB1-binding sites. Virology 321, 120–133. https://doi.org/10.1016/j.
          Perez, D.R., Angel, M., Gonzalez-Reiche, A.S., Santos, J., Obadan, A.,   virol.2003.12.022
            and Martinez-Sobrido, L. (2017). Plasmid-based reverse genetics of   Poole, E.L., Medcalf, L., Elton, D., and Digard, P. (2007). Evidence that the
            influenza A virus. Methods Mol. Biol.  1602, 251–273. https://doi.  C-terminal PB2-binding region of the influenza A virus PB1 protein is a
            org/10.1007/978-1-4939-6964-7_16                       discrete alpha-helical domain. FEBS Lett. 581, 5300–5306.
          Perez, J.T., Varble, A., Sachidanandam, R., Zlatev, I., Manoharan, M.,   Portela, A., and Digard, P. (2002). The influenza virus nucleoprotein: a
            García-Sastre, A., and tenOever, B.R. (2010). Influenza A virus-generated   multifunctional RNA-binding protein pivotal to virus replication. J. Gen.
            small RNAs regulate the switch from transcription to replication. Proc.   Virol. 83, 723–734.
            Natl. Acad. Sci. U.S.A.  107, 11525–11530. https://doi.org/10.1073/  Pothlichet, J., Chignard, M., and Si-Tahar, M. (2008). Cutting edge: innate
            pnas.1001984107                                        immune response triggered by influenza A virus is negatively regulated
          Pérez-González, A., Rodriguez, A., Huarte, M., Salanueva, I.J., and Nieto,   by SOCS1 and SOCS3 through a RIG-I/IFNAR1-dependent pathway. J.
            A. (2006). hCLE/CGI-99, a human protein that interacts with the   Immunol. 180, 2034–2038.
            influenza virus polymerase, is a mRNA transcription modulator. J. Mol.   Powe, J.R., and Castleman, W.L. (2009). Canine influenza virus replicates
            Biol. 362, 887–900.                                    in alveolar macrophages and induces TNF-alpha. Vet. Pathol. 46, 1187–
          Pérez-González, A., Pazo, A., Navajas, R., Ciordia, S., Rodriguez-Frandsen,   1196. https://doi.org/10.1354/vp.08-VP-0229-P-FL
            A., and Nieto, A. (2014). hCLE/C14orf166 associates with   Puzelli, S., Rossini, G., Facchini, M., Vaccari, G., Di Trani, L., Di Martino,
            DDX1-HSPC117-FAM98B in a novel transcription-dependent shuttling   A., Gaibani, P., Vocale, C., Cattoli, G., Bennett, M., et al. (2014). Human
                                                                   infection with highly pathogenic A(H7N7) avian influenza virus, Italy,
   38   39   40   41   42   43   44   45   46   47   48