Page 43 - Avian Virology: Current Research and Future Trends
P. 43
36 | Perez et al.
Pedersen, J.C. (2014). Hemagglutination-inhibition assay for influenza RNA-transporting complex. PLOS ONE 9, e90957. https://doi.
virus subtype identification and the detection and quantitation of serum org/10.1371/journal.pone.0090957
antibodies to influenza virus. Methods Mol. Biol. 1161, 11–25. https:// Perkins, L.E., and Swayne, D.E. (2001). Pathobiology of A/chicken/Hong
doi.org/10.1007/978-1-4939-0758-8_2 Kong/220/97 (H5N1) avian influenza virus in seven gallinaceous
Peiris, J.S., Poon, L.M., Nicholls, J.M., and Guan, Y. (2009). The role of species. Vet. Pathol. 38, 149–164. https://doi.org/10.1354/vp.38-2-149
influenza virus gene constellation and viral morphology on cytokine Perkins, L.E., and Swayne, D.E. (2002a). Pathogenicity of a Hong
induction, pathogenesis, and viral virulence. Hong Kong Med. J. 15 Kong-origin H5N1 highly pathogenic avian influenza virus for emus,
(Suppl. 3), 21–23. geese, ducks, and pigeons. Avian Dis. 46, 53–63. https://doi.org/10.163
Pena, L., Vincent, A.L., Loving, C.L., Henningson, J.N., Lager, K.M., Li, 7/0005-2086(2002)046[0053:POAHKO]2.0.CO;2
W., and Perez, D.R. (2012a). Strain-dependent effects of PB1-F2 of Perkins, L.E., and Swayne, D.E. (2002b). Susceptibility of laughing gulls
triple-reassortant H3N2 influenza viruses in swine. J. Gen. Virol. 93, (Larus atricilla) to H5N1 and H5N3 highly pathogenic avian influenza
2204–2214. viruses. Avian Dis. 46, 877–885. https://doi.org/10.1637/0005-2086(2
Pena, L., Vincent, A.L., Loving, C.L., Henningson, J.N., Lager, K.M., 002)046[0877:SOLGLA]2.0.CO;2
Lorusso, A., and Perez, D.R. (2012b). Restored PB1-F2 in the 2009 Perkins, L.E., and Swayne, D.E. (2003). Varied pathogenicity of a Hong
pandemic H1N1 influenza virus has minimal effects in swine. J. Virol. 86, Kong-origin H5N1 avian influenza virus in four passerine species and
5523–5532. https://doi.org/10.1128/JVI.00134-12 budgerigars. Vet. Pathol. 40, 14–24.
Perales, B., and Ortín, J. (1997). The influenza A virus PB2 polymerase Perroncito, E. (1878). Epizoozia tifoide nei gallinacei. Annali. Accad. Agri.
subunit is required for the replication of viral RNA. J. Virol. 71, 1381– Torino. 21, 87–126.
1385. Philbin, V.J., Iqbal, M., Boyd, Y., Goodchild, M.J., Beal, R.K., Bumstead, N.,
Perales, B., de la Luna, S., Palacios, I., and Ortín, J. (1996). Mutational Young, J., and Smith, A.L. (2005). Identification and characterization
analysis identifies functional domains in the influenza A virus PB2 of a functional, alternatively spliced Toll-like receptor 7 (TLR7) and
polymerase subunit. J. Virol. 70, 1678–1686. genomic disruption of TLR8 in chickens. Immunology 114, 507–521.
Perales, B., Sanz-Ezquerro, J.J., Gastaminza, P., Ortega, J., Santarén, J.F., Pichlmair, A., Lassnig, C., Eberle, C.A., Górna, M.W., Baumann, C.L.,
Ortín, J., and Nieto, A. (2000). The replication activity of influenza Burkard, T.R., Bürckstümmer, T., Stefanovic, A., Krieger, S., Bennett, K.L.,
virus polymerase is linked to the capacity of the PA subunit to induce et al. (2011). IFIT1 is an antiviral protein that recognizes 5′-triphosphate
proteolysis. J. Virol. 74, 1307–1312. RNA. Nat. Immunol. 12, 624–630. https://doi.org/10.1038/ni.2048
Pereda, A.J., Uhart, M., Perez, A.A., Zaccagnini, M.E., La Sala, L., Decarre, Pielak, R.M., and Chou, J.J. (2011). Influenza M2 proton channels.
J., Goijman, A., Solari, L., Suarez, R., Craig, M.I., et al. (2008). Avian Biochim. Biophys. Acta 1808, 522–529. https://doi.org/10.1016/j.
influenza virus isolated in wild waterfowl in Argentina: evidence of a bbamem.2010.04.015
potentially unique phylogenetic lineage in South America. Virology 378, Pillai, S.P., Pantin-Jackwood, M., Yassine, H.M., Saif, Y.M., and Lee, C.W.
363–370. https://doi.org/10.1016/j.virol.2008.06.010 (2010). The high susceptibility of turkeys to influenza viruses of different
Perez, D.R. (2017). Reverse Genetics of RNA Viruses Methods and origins implies their importance as potential intermediate hosts. Avian
Protocols (Humana Press, Springer, New York). Dis. 54 (Suppl. 1), 522–526. https://doi.org/10.1637/8770-03310
Perez, D.R., and de Wit, J.J.S. (2016). Low-pathogenicity avian influenza. In 9-Review.1
Animal Influenza, D. Swayne, ed. (John Wiley & Sons, Inc., Ames, IA), Pinto, L.H., Holsinger, L.J., and Lamb, R.A. (1992). Influenza virus M2
pp. 271–301. protein has ion channel activity. Cell 69, 517–528.
Pérez, D.R., and Donis, R.O. (1995). A 48-amino-acid region of influenza Pleschka, S., Wolff, T., Ehrhardt, C., Hobom, G., Planz, O., Rapp, U.R., and
A virus PB1 protein is sufficient for complex formation with PA. J. Virol. Ludwig, S. (2001). Influenza virus propagation is impaired by inhibition
69, 6932–6939. of the Raf/MEK/ERK signalling cascade. Nat. Cell Biol. 3, 301–305.
Perez, D.R., and Donis, R.O. (2001). Functional analysis of PA binding by https://doi.org/10.1038/35060098
influenza a virus PB1: effects on polymerase activity and viral infectivity. Plotch, S.J., and Krug, R.M. (1977). Influenza virion transcriptase: synthesis
J. Virol. 75, 8127–8136. in vitro of large, polyadenylic acid-containing complementary RNA. J.
Perez, D.R., Lim, W., Seiler, J.P., Yi, G., Peiris, M., Shortridge, K.F., and Virol. 21, 24–34.
Webster, R.G. (2003a). Role of quail in the interspecies transmission of Plotch, S.J., Bouloy, M., Ulmanen, I., and Krug, R.M. (1981). A unique
H9 influenza A viruses: molecular changes on HA that correspond to cap(m7GpppXm)-dependent influenza virion endonuclease cleaves
adaptation from ducks to chickens. J. Virol. 77, 3148–3156. capped RNAs to generate the primers that initiate viral RNA
Perez, D.R., Webby, R.J., Hoffmann, E., and Webster, R.G. (2003b). transcription. Cell 23, 847–858.
Land-based birds as potential disseminators of avian/mammalian Ponimaskin, E., and Schmidt, M.F. (1998). Domain-structure of cytoplasmic
reassortant influenza A viruses. Avian Dis. 47, 1114–1117. border region is main determinant for palmitoylation of influenza virus
Perez, D.R., Nazarian, S.H., McFadden, G., and Gilmore, M.S. (2005). hemagglutinin (H7). Virology 249, 325–335.
Miscellaneous threats: Highly pathogenic avian influenza, and novel Poole, E., Elton, D., Medcalf, L., and Digard, P. (2004). Functional
bio-engineered organisms. In Biodefense Principles and Pathogens, M. domains of the influenza A virus PB2 protein: identification of NP- and
Bronze, and R.A. Greenfield, eds. (Taylor and Francis, Norfolk). PB1-binding sites. Virology 321, 120–133. https://doi.org/10.1016/j.
Perez, D.R., Angel, M., Gonzalez-Reiche, A.S., Santos, J., Obadan, A., virol.2003.12.022
and Martinez-Sobrido, L. (2017). Plasmid-based reverse genetics of Poole, E.L., Medcalf, L., Elton, D., and Digard, P. (2007). Evidence that the
influenza A virus. Methods Mol. Biol. 1602, 251–273. https://doi. C-terminal PB2-binding region of the influenza A virus PB1 protein is a
org/10.1007/978-1-4939-6964-7_16 discrete alpha-helical domain. FEBS Lett. 581, 5300–5306.
Perez, J.T., Varble, A., Sachidanandam, R., Zlatev, I., Manoharan, M., Portela, A., and Digard, P. (2002). The influenza virus nucleoprotein: a
García-Sastre, A., and tenOever, B.R. (2010). Influenza A virus-generated multifunctional RNA-binding protein pivotal to virus replication. J. Gen.
small RNAs regulate the switch from transcription to replication. Proc. Virol. 83, 723–734.
Natl. Acad. Sci. U.S.A. 107, 11525–11530. https://doi.org/10.1073/ Pothlichet, J., Chignard, M., and Si-Tahar, M. (2008). Cutting edge: innate
pnas.1001984107 immune response triggered by influenza A virus is negatively regulated
Pérez-González, A., Rodriguez, A., Huarte, M., Salanueva, I.J., and Nieto, by SOCS1 and SOCS3 through a RIG-I/IFNAR1-dependent pathway. J.
A. (2006). hCLE/CGI-99, a human protein that interacts with the Immunol. 180, 2034–2038.
influenza virus polymerase, is a mRNA transcription modulator. J. Mol. Powe, J.R., and Castleman, W.L. (2009). Canine influenza virus replicates
Biol. 362, 887–900. in alveolar macrophages and induces TNF-alpha. Vet. Pathol. 46, 1187–
Pérez-González, A., Pazo, A., Navajas, R., Ciordia, S., Rodriguez-Frandsen, 1196. https://doi.org/10.1354/vp.08-VP-0229-P-FL
A., and Nieto, A. (2014). hCLE/C14orf166 associates with Puzelli, S., Rossini, G., Facchini, M., Vaccari, G., Di Trani, L., Di Martino,
DDX1-HSPC117-FAM98B in a novel transcription-dependent shuttling A., Gaibani, P., Vocale, C., Cattoli, G., Bennett, M., et al. (2014). Human
infection with highly pathogenic A(H7N7) avian influenza virus, Italy,