Page 5 - 01-Yr5_Front cover-ccp.indd
P. 5
7
~=M•l:t010._
.,- H--4-
~i_ -
I ~H---1--1--1--l-l---JI--I-I-+ 1---1-+-l--l;-'-I
PAGES
;~ -+++++-H--<H-+-+-++-1--+++-H'-H
t-+
rn b ~L H- __ ...,__._._-1--1--+-;__,__,__.__,'4--,
• +++-H-+l--+-lo++-+-+-l--l-++1--1-+-!
~ U be 0 OU S :~HH-,_-H,H:+-~1+-+H.:_-l--H~-H -H+-l-l-'-1-'-IH
g 3 1 2 5 -....... means represents
__.... " b __.. blue
y 6 8 7 4 y -..... yellow ~ ---. « _
p __,.. pink w ---. white
ordered (3,6) (1,8) (2,7) (5,4)
pairs
graph B graph C
~:-+-t--t-iH-+-+-++t-++++-t-1--+-t-j-H
-+++-i'4--'4-<-1-+++++-+++-+-<•-+-1- ~: +-+'-+-++--..__._.__.,_+++-+--!-!-+--~
11 -+-+-HH-++-+-+++-++++-+++-;-+-<
a Practical: mark points (3,6), (1,8), ·o.+-+-+--+-+-+--i-++-H P 10 +.++-IH-++-~-l-+-l+--!-l-!-l-'-I
: ++-HH-++-H-++++-t-!-+!-+-!-'-1
(2, 7), (5,4) on Resource Master 2. :++-+-H++++-H--l-'-1--'H-l-f-+
5
-+-+-H-++-H-+-+-H-++-+-l-H
3 ++-+-<'-'-'--'--<-+++,-+-++~-H-
b The points are in a straight , ___ >--+++~'4-+-+._._..-+~rlo--1
.'+, ++, ,++, 5-HO 7-H~ 9f-+-~01H-1121++314++1518-H1718-+<!19~~ O 1 2 3 4 5 8 7 ~ 9101~ 1213141~1~1~ 1~1S3l
diagonal line. y w
~
rn
a Any three ordered pairs out of: (O,q) (4,5) (6,3) (7,2) (8, 1) (q,o)
b Practical: plot the three ordered pairs on the graph.
a I know that graph A is the graph of r + b = 16 because the points form a
c The new points will be part of the straight diagonal line from (O,q) to (q,o). straight diagonal line from (0, 16) to (16,0) and/or the total of the digits in
each ordered pair is 16.
b Any three ordered pairs out of: (0, 16) (2, 14) (3, 13) (4, 12) (5, 11 ) (6, 1 O)
(7,q) (q,7) (1 0,6) (1 1,5) (12,4) (13,3) (1 5, 1) (16,0)
g+y=q
Challenge
Create a table listing a range of ordered pairs similar to:
I know that graph B is the graph of y + g = 1 q because the points form a
b 0 1 2 3 4 5 6 7 8 q ... 17 straight diagonal line from (0, 1 q) to (1 q,o) and/or the total of the digits in
each ordered pair is always 1 q_
w 17 16 15 14 13 12 11 10 q 8 ... 0
ordered (0, 17) (1, 16) (2, 15) (3, 14) (4, 13) (5, 12) (6, 11) (7, 10) (8,q) (q,8) ... (17,0) I know that graph C is the graph of w + p = 20 because the points form a
pairs straight diagonal line from (0,20) to (20,0) and/or the total of the digits in
each ordered pair is always 20.
Practical: plot the ordered pairs on Resource Master 2.
Rule: b+ w= 17
The graphs are the same in that they both have points forming a straight
diagonal line where the total of the digits in each ordered pair is constant