Page 56 - 01-Yr5_Front cover-ccp.indd
P. 56
58
• Letters for numbers • • ••• • Slab patterns • • • • • • •
b
1
Draw three simple diagrams to represent these square slabs .
•• • ••• • •• Draw the next three diagrams to continue the pattern . ~:(ot•l¥1EJ~
•
J •
•
• • •
PAGE 31
•• ···: 2 CICEI'''' -represents1metre --~-) -r-_J~---
I perimeter
slabs
in metres
/
a Copy and complete this table
for the six diagrams you have drown.
h. • .. ) b Without drawing diagrams, decide the slab patterns
9 for the next three rows and odd them to the table.
J • • J • c Explain in words, the rule connecting every perimeter
•••• ••• @] Draw the 1 oth and the 15th slob pattern.
to the number of slobs .
Check that your rule works for these.
Add the results to your table.
[O • Using the pictures to help you, decide what the red text
in each equation means.
[ij a Correct the green numerals in the operations INPUT r,;;:::\. ou_TPUT
a 34 = 6 b 59 = 35 c 9b = 90 d 7• = 21 box so that it is true for your table. slobs t.:..::.::::/" perimeter
• Explain what you think.
b Correct this formula so that it is true. p = 3s + 4
• Then compare what you think with the explanation in the box below.
~ Repeat stages (ij tom for this slob pattern.
~ Complete these equations with the help of the pictures.
a 9f = b 121 = c 20h = d 50c =
[El a If 8b = 80 write other equations which equal 80. (Use the pictures.)
b Write equations which equal 48.
c Write equations which equal 63.
i3}J Write at least 5 more equations like these,
equal to 60, using the pictures. Now try page 32. The operation and the formula
89 is o short way of writing '9 x 8' or 8 x g'
e.g. 89 + 4 = 60 Both mean 'g eight times' or 'eight lots of 9' must be true for every example.
So if g = 7, then 89 = 8 x 7 or 7 x 8 = 56.
7d-3=60
m
DJ I I
a 2 b 7 c 10 d 3
a and b perimeter in Practical: drawing the 10th and 15th
a 72 b 60 c 120 d 200 slabs (s) metres (p) slab patterns and checking the rule.
1 4 Add results to table. (See [gJ )
2 6
3 8 ~
a Possible equations: 40a = 80, 20c = 80, 1 Of = 80, 16i = 80
4 10 a INPUT X 2 + 2 >
OUTPUT
b Possible equations: 24a = 48, 12c = 48, 16e = 48, 6f = 48, 8h = 48 5 12 slabs perimeter
c Possible equations: 7d = 63, 21 e = 63, qg = 63 6 14
b p = 2s + 2
7 16
8 18 ~
q 20 Repeat stages ITJ to ~ for new
Open: write equations to equal 60. Five possibilities: slab patterns. The answers for [gJ
10 22
18e + 6 = 60, 7g + 11 = 60, 1 Oi + 1 O = 60, 11 h - 6 = 60, 31 a - 2 = 60 15 32 to ~ should be the same.
c Multiply the number of slabs by 2 and then add 2.