Page 307 - Understanding Machine Learning
P. 307

23.3 Compressed Sensing  289


              Next, we show that  h T   1 cannot be large. Indeed, from the definition of x we
                                   c
                                  0

              have that  x  1 ≥√x   1 = x +h  1 . Thus, using the triangle inequality we obtain that

                                                                                 c
                                                                          c
                x  1 ≥√x + h  1 =  |x i + h i |+  |x i + h i |≥  x T 0 1 −⊂h T 0 1 + h T   1 −⊂x T   1


                                                                         0       0
                               i∈T 0       i∈T  c
                                             0
                                                                                (23.7)
              and since  x T   1 = x − x s   1 = x  1 −⊂x T 0 1 we get that
                         c

                         0
                                       h T   1 ≤√h T 0 1 + 2 x T   1 .          (23.8)
                                                          c

                                         c
                                         0                0
              Combining this with Equation (23.6) we get that

                         h T   2 ≤ s −1/2   h T 0 1 + 2 x T   1 ≤√h T 0 2 + 2s −1/2  x T   1 ,


                                                                        c
                           c
                                                  c
                          0,1                     0                     0
              which concludes the proof of claim 1.
              Proving Claim 2:
              For the second claim we use the RIP condition to get that
                                                 2          2
                                                  ≤√Wh T 0,1 2
                                      (1 − 
) h T 0,1 2      .                  (23.9)

                         = Wh −           =−            we have that
              Since Wh T 0,1      j≥2  Wh T j   j≥2  Wh T j

                              2
                               =−
                       Wh T 0,1 2      Wh T 0,1  ,Wh T j   =−   Wh T 0  + Wh T 1  ,Wh T j   .
                                   j≥2                 j≥2
              From the RIP condition on inner products we obtain that for all i ∈{1,2} and j ≥ 2
              we have
                                                | ≤ 
 h T i 2  h T j 2 .


                                    | Wh T i  ,Wh T j
                                  √


              Since  h T 0 2 + h T 1 2 ≤  2 h T 0,1 2 we therefore get that

                                              √
                                         2


                                          ≤
                                   Wh T 0,1 2  2
 h T 0,1 2   h T j 2 .
                                                        j≥2
              Combining this with Equation (23.6) and Equation (23.9) we obtain
                                              √
                                           2             −1/2
                                            ≤

                                                                c
                                (1 − 
) h T 0,1 2  2
 h T 0,1 2 s   h T   1 .
                                                                0
              Rearranging the inequality gives
                                               √
                                                2
  −1/2
                                                          c

                                      h T 0,1 2 ≤  s    h T   1 .
                                               1 − 
      0
              Finally, using Equation (23.8) we get that
                       h T 0,1 2 ≤ ρs −1/2  ( h T 0 1 + 2 x T   1 ) ≤ ρ h T 0 2 + 2ρs −1/2  x T   1 ,
                                                 c
                                                                         c



                                                 0                       0
              but since  h T 0 2 ≤√h T 0,1 2 this implies


                                               2ρ   −1/2
                                                          c

                                      h T 0,1 2 ≤  s    x T   1 ,
                                              1 − ρ       0
              which concludes the proof of the second claim.
   302   303   304   305   306   307   308   309   310   311   312