Page 376 - Understanding Machine Learning
P. 376

Multiclass Learnability
           358

                      1. Let H discrete be the class of all functions f :[k − 1] × [d − 1] →{0,1} for which
                         there exists some i 0 such that, for every j ∈ [d − 1]
                                        ∀i < i 0 , f (i, j) = 1 while ∀i > i 0 , f (i, j) = 0.
                                        OvA,k
                         Show that Ndim(H    ) = (d − 1) · (k − 1).
                                        discrete
                      2. Show that H discrete can be realized by H. That is, show that there exists a
                                                    d
                         mapping ψ :[k − 1]× [d − 1] → R such that
                                               H discrete ⊂{h ◦ψ : h ∈ H}.
                         Hint: You can take ψ(i, j) to be the vector whose jth coordinate is 1, whose
                         last coordinate is i, and the rest are zeros.
                                            OvA,k
                      3. Conclude that Ndim(H   ) ≥ (d − 1) · (k − 1).
   371   372   373   374   375   376   377   378   379   380   381