Page 389 - Understanding Machine Learning
P. 389

Technical Lemmas  371


              Using Stirling’s approximation we further have that

                                                 d
                                  em          d        (m − d)
                                       d
                               ≤         1 +            √
                                   d          e   (d + 1) 2πd(d/e) d

                                  em           m − d
                                       d
                               =         1 + √
                                   d          2πd(d + 1)
                                                       √
                                  em
                                       d d + 1 + (m − d)/ 2πd
                               =        ·
                                   d            d + 1
                                  em
                                       d d + 1 + (m − d)/2
                               ≤        ·
                                   d          d + 1
                                  em
                                       d d/2 + 1 + m/2
                               =        ·
                                   d        d + 1
                                  em      m
                                       d
                               ≤        ·    ,
                                   d     d + 1
              where in the last inequality we used the assumption that d ≤ m − 2. On the other
              hand,
                                        d+1                       d
                                  em           em    d  em   d
                                           =       ·     ·
                                 d + 1         d    d + 1   d + 1
                                              em     em       1
                                                   d
                                           =       ·     ·
                                               d    d + 1 (1 + 1/d) d
                                              em     em   1
                                                   d
                                           ≥       ·     ·
                                               d    d + 1 e
                                              em      m
                                                   d
                                           =       ·     ,
                                               d    d + 1
              which proves our inductive argument.
              Lemma A.6.  For all a ∈ R we have
                                            a
                                           e + e −a  a /2
                                                      2
                                                  ≤ e   .
                                              2
              Proof. Observe that
                                                 ∞   n
                                                    a
                                             a
                                            e =       .
                                                    n!
                                                 n=0
              Therefore,
                                                   ∞
                                         a
                                         e + e −a     a 2n
                                                =         ,
                                            2        (2n)!
                                                  n=0
              and
                                                 ∞   a 2n

                                            2
                                          e a /2  =     .
                                                     n
                                                    2 n!
                                                 n=0
                                   n
              Observing that (2n)! ≥ 2 n! for every n ≥ 0 we conclude our proof.
   384   385   386   387   388   389   390   391   392   393   394