Page 32 - Data Science Algorithms in a Week
P. 32

Unsupervised Ensemble Learning                       17

                       Azimi, J., Mohammadi, M., & Analoui, M. (2006). Clustering ensembles using genetic
                          algorithm Computer Architecture for Machine Perception and Sensing, 2006. CAMP
                          2006. International Workshop on (pp. 119-123): IEEE.
                       Berikov,  V.  (2014).  Weighted  ensemble  of  algorithms  for  complex  data  clustering.
                          Pattern Recognition Letters, 38, 99-106.
                       Berkhin,  P.  (2006).  A  survey  of  clustering  data  mining  techniques  Grouping
                          multidimensional data (pp. 25-71): Springer.
                       Cades, I., Smyth, P., & Mannila, H. (2001). Probabilistic modeling of transactional data
                          with applications to profiling, visualization and prediction, sigmod. Proc. of the 7th
                          ACM SIGKDD. San Francisco: ACM Press, 37-46.
                       Carpineto, C., & Romano, G. (2012). Consensus clustering based on a new probabilistic
                          rand  index  with  application  to  subtopic  retrieval.  IEEE  Transactions  on  pattern
                          analysis and machine intelligence, 34(12), 2315-2326.
                       d  Souto,  M.,  de  Araujo,  D.  S.,  &  da  Silva,  B.  L.  (2006).  Cluster  ensemble  for  gene
                          expression  microarray  data:  accuracy  and  diversity  Neural  Networks,  2006.
                          IJCNN'06. International Joint Conference on (pp. 2174-2180): IEEE.
                       de  Hoon,  M.  J.,  Imoto,  S.,  Nolan,  J.,  &  Miyano,  S.  (2004).  Open  source  clustering
                          software. Bioinformatics, 20(9), 1453-1454.
                       Dimitriadou, E., Weingessel, A., & Hornik, K. (2002). A combination scheme for fuzzy
                          clustering. International Journal of Pattern Recognition and Artificial Intelligence,
                          16(07), 901-912.
                       Domeniconi,  C.,  &  Al-Razgan,  M.  (2009).  Weighted  cluster  ensembles:  Methods  and
                          analysis. ACM Transactions on Knowledge Discovery from Data (TKDD), 2(4), 17.
                       Domeniconi, C., Gunopulos, D., Ma, S., Yan, B., Al-Razgan, M., & Papadopoulos, D.
                          (2007). Locally adaptive metrics for clustering high dimensional data. Data mining
                          and knowledge discovery, 14(1), 63-97.
                       Dudoit,  S.,  &  Fridlyand,  J.  (2003).  Bagging  to  improve  the  accuracy  of  a  clustering
                          procedure. Bioinformatics, 19(9), 1090-1099.
                       Esmin, A. A., & Coelho, R. A. (2013). Consensus clustering based on particle swarm
                          optimization  algorithm  Systems,  Man,  and  Cybernetics  (SMC),  2013  IEEE
                          International Conference on (pp. 2280-2285): IEEE.
                       Ester,  M.,  Kriegel,  H.-P.,  Sander,  J.,  &  Xu,  X.  (1996).  A  density-based  algorithm  for
                          discovering  clusters  in  large  spatial  databases  with  noise.  Paper  presented  at  the
                          Kdd.
                       Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge
                          discovery in databases. AI magazine, 17(3), 37.
                       Fern, X.  Z.,  &  Brodley,  C.  E. (2004).  Solving  cluster  ensemble  problems  by  bipartite
                          graph  partitioning  Proceedings  of  the  twenty-first  international  conference  on
                          Machine learning (pp. 36): ACM.
   27   28   29   30   31   32   33   34   35   36   37