Page 32 - Data Science Algorithms in a Week
P. 32
Unsupervised Ensemble Learning 17
Azimi, J., Mohammadi, M., & Analoui, M. (2006). Clustering ensembles using genetic
algorithm Computer Architecture for Machine Perception and Sensing, 2006. CAMP
2006. International Workshop on (pp. 119-123): IEEE.
Berikov, V. (2014). Weighted ensemble of algorithms for complex data clustering.
Pattern Recognition Letters, 38, 99-106.
Berkhin, P. (2006). A survey of clustering data mining techniques Grouping
multidimensional data (pp. 25-71): Springer.
Cades, I., Smyth, P., & Mannila, H. (2001). Probabilistic modeling of transactional data
with applications to profiling, visualization and prediction, sigmod. Proc. of the 7th
ACM SIGKDD. San Francisco: ACM Press, 37-46.
Carpineto, C., & Romano, G. (2012). Consensus clustering based on a new probabilistic
rand index with application to subtopic retrieval. IEEE Transactions on pattern
analysis and machine intelligence, 34(12), 2315-2326.
d Souto, M., de Araujo, D. S., & da Silva, B. L. (2006). Cluster ensemble for gene
expression microarray data: accuracy and diversity Neural Networks, 2006.
IJCNN'06. International Joint Conference on (pp. 2174-2180): IEEE.
de Hoon, M. J., Imoto, S., Nolan, J., & Miyano, S. (2004). Open source clustering
software. Bioinformatics, 20(9), 1453-1454.
Dimitriadou, E., Weingessel, A., & Hornik, K. (2002). A combination scheme for fuzzy
clustering. International Journal of Pattern Recognition and Artificial Intelligence,
16(07), 901-912.
Domeniconi, C., & Al-Razgan, M. (2009). Weighted cluster ensembles: Methods and
analysis. ACM Transactions on Knowledge Discovery from Data (TKDD), 2(4), 17.
Domeniconi, C., Gunopulos, D., Ma, S., Yan, B., Al-Razgan, M., & Papadopoulos, D.
(2007). Locally adaptive metrics for clustering high dimensional data. Data mining
and knowledge discovery, 14(1), 63-97.
Dudoit, S., & Fridlyand, J. (2003). Bagging to improve the accuracy of a clustering
procedure. Bioinformatics, 19(9), 1090-1099.
Esmin, A. A., & Coelho, R. A. (2013). Consensus clustering based on particle swarm
optimization algorithm Systems, Man, and Cybernetics (SMC), 2013 IEEE
International Conference on (pp. 2280-2285): IEEE.
Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. Paper presented at the
Kdd.
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge
discovery in databases. AI magazine, 17(3), 37.
Fern, X. Z., & Brodley, C. E. (2004). Solving cluster ensemble problems by bipartite
graph partitioning Proceedings of the twenty-first international conference on
Machine learning (pp. 36): ACM.