Page 137 - Data Science Algorithms in a Week
P. 137

Clustering into K Clusters


                0.4011627907), 4), ((0.125, 1.0), 2), ((0.625, 0.0058139535), 3), ((1.0,
                0.0), 1), ((0.5, 0.0058139535), 3), ((0.375, 0.0174418605), 3), ((0.5,
                0.0174418605), 3), ((0.75, 0.0174418605), 3)]
                centroids = [(0.0, 0.0406976744), (1.0, 0.0), (0.125, 1.0), (0.5,
                0.0174418605), (0.25, 0.3430232558)]
                Step number 1: point_groups = [((0.0, 0.0406976744), 0), ((0.0,
                0.0988372093), 0), ((0.125, 0.0581395349), 0), ((0.0, 0.1860465116), 0),
                ((0.0, 0.0348837209), 0), ((0.0, 0.1569767442), 0), ((0.0, 0.0348837209),
                0), ((0.25, 0.3430232558), 4), ((0.25, 0.261627907), 4), ((0.125,
                0.4011627907), 4), ((0.125, 1.0), 2), ((0.625, 0.0058139535), 3), ((1.0,
                0.0), 1), ((0.5, 0.0058139535), 3), ((0.375, 0.0174418605), 3), ((0.5,
                0.0174418605), 3), ((0.75, 0.0174418605), 3)]
                centroids = [(0.017857142857142856, 0.08720930231428571), (1.0, 0.0),
                (0.125, 1.0), (0.55, 0.0127906977), (0.20833333333333334,
                0.3352713178333333)]


































            This clustering further divides the blue cluster of the remaining religious books into the
            blue cluster of the Hindi books and the gray cluster of the Christian books.








                                                    [ 125 ]
   132   133   134   135   136   137   138   139   140   141   142