Page 204 - Data Science Algorithms in a Week
P. 204

program arguments  187                       implementation  10, 13
            for loop                                        visualization  14
               about  185
               on range  185                             L
            G                                            level of confidence
                                                            measuring  94, 95
            genetic algorithms  190                      linear regression
            gradient descent algorithm                      about  178
               about  140, 141, 143                         on perfect data  136, 137
               implementation  140                          on real-world data  139, 140
               models, comparison by R  144                 visualization  138
            I                                            M
            ID3 algorithm                                map data
               about  57                                    analysis  16, 17
               decision tree construction  57, 58           example  15
               implementation  58, 64
            independent events  33, 34                   N
            inductive inference  190                     Naive Bayes classifier
            information entropy                             about  189
               about  53                                    implementation  34
               coin flipping  54                         Naive Bayes' theorem
               definition  54, 55                           about  29
            information gain  55                            basic application  30, 31
            information gain calculation  55                extension  31, 32
            information theory  53                          proof  31, 32
            K                                            Naive Bayes
                                                            for continuous random variables  40, 42
            k clusters                                   neural networks  190
               analysis  113, 117, 118, 119, 120         non-linear model  146, 147, 148
               classifying  105, 107, 108
               clustering  102, 103                      P
               in semantic context  119, 123, 126        PageRank  190
               selecting  113                            principal component analysis  190
            k-means clustering algorithm                 priori association rules  190
               about  103, 189                           Python reference
               centroid, computing  104                     about  179
               implementation  109                          comments  180
               initial k-centroids, picking  104            Python Hello World example  179
               input data, from gender classification  112
               on household income example  104, 105     R
               program output, for gender classification data   R reference
               112
            k-nearest neighbors algorithm                   about  174
               about  189                                   comments  175

                                                    [ 192 ]
   199   200   201   202   203   204   205