Page 88 - Data Science Algorithms in a Week
P. 88
72 Olmer Garcia and Cesar Diaz
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, 1097–1105.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
Liu, P., Kurt, A., & Ozguner, U. (2014). Trajectory prediction of a lane changing vehicle
based on driver behavior estimation and classification. In 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC), 942–947.
Malik, H., Larue, G. S., Rakotonirainy, A., & Maire, F. (2015). Fuzzy logic to evaluate
driving maneuvers: An integrated approach to improve training. IEEE Transactions
on Intelligent Transportation Systems, 16(4), 1728–1735.
Merat, N., Jamson, A. H., Lai, F. C., Daly, M., & Carsten, O. M. (2014). Transition to
manual: Driver behaviour when resuming control from a highly automated vehicle.
Transportation Research Part F: Traffic Psychology and Behaviour,27, Part B, 274 –
282. Vehicle Automation and Driver Behaviour.
Michalski, S. R., Carbonell, J., & Mitchell, T. (1983). Machine Learning: An Artificial
Intelligence Approach. Tioga Publishing Company.
NHTSA (2013). US department of transportation releases policy on automated vehicle
development. Technical report, Highway Traffic Safety Administration.
Organization, W. H. (2015). Global status report on road safety 2015. http://apps.who.
int/iris/bitstream/10665/189242/1/9789241565066_eng.pdf?ua=1. (Accessed on
08/11/2016).
Park, J., Bae, B., Lee, J., & Kim, J. (2010). Design of failsafe architecture for unmanned
ground vehicle. In Control Automation and Systems (ICCAS), 2010 International
Conference on, 1101–1104.
Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to autonomous
mobile robots. MIT Press, 2nd Edition.
Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.
Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(1), 1929–1958.
Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2011). The German Traffic Sign
Recognition Benchmark: A multi-class classification competition. In IEEE
International Joint Conference on Neural Networks, 1453–1460.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
1–9.