Page 88 - Data Science Algorithms in a Week
P. 88

72                        Olmer Garcia and Cesar Diaz

                       Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
                          convolutional  neural  networks.  In  Advances  in  neural  information  processing
                          systems, 1097–1105.
                       LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied
                          to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
                       Liu, P., Kurt, A., & Ozguner, U. (2014). Trajectory prediction of a lane changing vehicle
                          based on  driver behavior estimation and  classification.  In  17th  International IEEE
                          Conference on Intelligent Transportation Systems (ITSC), 942–947.
                       Malik, H., Larue, G. S., Rakotonirainy, A., & Maire, F. (2015). Fuzzy logic to evaluate
                          driving maneuvers: An integrated approach to improve training. IEEE Transactions
                          on Intelligent Transportation Systems, 16(4), 1728–1735.
                       Merat, N., Jamson, A. H., Lai, F. C., Daly, M., & Carsten, O. M. (2014). Transition to
                          manual: Driver behaviour when resuming control from a highly automated vehicle.
                          Transportation Research Part F: Traffic Psychology and Behaviour,27, Part B, 274 –
                          282. Vehicle Automation and Driver Behaviour.
                       Michalski, S. R., Carbonell, J., & Mitchell, T. (1983). Machine Learning: An Artificial
                          Intelligence Approach. Tioga Publishing Company.
                       NHTSA (2013). US department of transportation releases policy on automated vehicle
                          development. Technical report, Highway Traffic Safety Administration.
                       Organization, W. H. (2015). Global status report on road safety 2015. http://apps.who.
                          int/iris/bitstream/10665/189242/1/9789241565066_eng.pdf?ua=1.   (Accessed   on
                          08/11/2016).
                       Park, J., Bae, B., Lee, J., & Kim, J. (2010). Design of failsafe architecture for unmanned
                          ground  vehicle.  In  Control  Automation  and  Systems  (ICCAS),  2010  International
                          Conference on, 1101–1104.
                       Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to autonomous
                          mobile robots. MIT Press, 2nd Edition.
                       Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-scale
                          image recognition. arXiv preprint arXiv:1409.1556.
                       Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
                          Dropout:  a  simple  way  to  prevent  neural  networks  from  overfitting.  Journal  of
                          Machine Learning Research, 15(1), 1929–1958.
                       Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2011). The German Traffic Sign
                          Recognition  Benchmark:  A  multi-class  classification  competition.  In  IEEE
                          International Joint Conference on Neural Networks, 1453–1460.
                       Szegedy,  C.,  Liu,  W.,  Jia,  Y.,  Sermanet,  P.,  Reed,  S.,  Anguelov,  D.,  Erhan,  D.,
                          Vanhoucke,  V.,  &  Rabinovich,  A.  (2015).  Going  deeper  with  convolutions.  In
                          Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
                          1–9.
   83   84   85   86   87   88   89   90   91   92   93