Page 61 - Data Science Algorithms in a Week
P. 61

Using Deep Learning to Configure Parallel Distributed Discrete-Event Simulators  45

                       Hinton, G., Osindero, S., & Teh, Y. (2006). A Fast Learning Algorithm for Deep Belief
                          Nets. Neural Computation, 18(7), 1527-1554.
                       Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural
                          networks. Science, 313(5786), 504-507. doi:10.1126/science.1127647
                       Längkvist,  M.,  Karlsson,  L.,  &  Loutfi,  A.  (2012).  Sleep  stage  classification  using
                          unsupervised feature learning. Advances in Artificial Neural Systems, 2012, Article
                          ID 107046, 9 pages. doi:10.1155/2012/107046
                       Längkvist,  M.,  Karlsson,  L.,  &  Loutfi,  A.  (2014).  A  Review  of  Unsupervised  Feature
                          Learning and Deep Learning for Time-Series Modeling. Pattern Recognition Letters,
                          42, 11-24. doi :10.1016/j.patrec.2014.01.008
                       Larochelle, H., Bengio, Y., Louradour, J., & Lamblin, P. (2009). Exploring strategies for
                          training deep neural networks. The Journal of Machine Learning Research, 10, 1-40.
                       Le  Roux,  N.,  &  Bengio,  Y.  (2008).  Representational  power  of  restricted  Boltzmann
                          machines  and  deep  belief  networks.  Neural  Computation,  20,  1631-1649.
                          doi:10.1162/neco.2008.04-07-510
                       Misra,  S.  (2006).  A  Complexity  Measure  based  on  Cognitive  Weights.  International
                          Journal of Theoretical and Applied Computer Sciences, 1(1), 1–10.
                       Mohamed,  A.,  Sainath,  T.,  Dahl,  G.,  Ramabhadran,  B.,  Hinton,  G.,  &  Picheny,  M.
                          (2011).  Deep  belief  networks  using  discriminative  features  for  phone  recognition.
                          Proceeding  of  the  IEEE  Conference  on  Acoustics,  Speech  and  Signal  Processing,
                          5060-5063.
                       Mohamed,  A.,  Dahl,  G.,  &  Hinton,  G.  (2012).  Acoustic  modeling  using  deep  belief
                          networks.  IEEE  Transactions  on  Audio,  Speech,  and  Language  Processing,  20(1),
                          14-22. doi:10.1109/TASL.2011.2109382
                       Salakhutdinov,  R.,  &  Murray,  L.  (2008).  On  the  quantitative  analysis  of  deep  belief
                          networks.  Proceedings  of  the  25th  international  conference  on  Machine  learning,
                          872-879. doi:10.1145/1390156.1390266
                       Shao, J., & Wang, Y. (2003). A new measure of software complexity based on cognitive
                          weights. Canadian Journal of Electrical and Computer Engineering, No. 0840-8688,
                          1- 6.
                       Steinman,  J.  (1991).  SPEEDES:  Synchronous  Parallel  Environment  for  Emulation  and
                          Discrete  Event  Simulation.  Proceedings  of  Advances  in  Parallel  and  Distributed
                          Simulation, 95-103.
                       Steinman,  J.  (1992).  SPEEDES:  A  Multiple-Synchronization  Environment  for  Parallel
                          Discrete-Event  Simulation.  International  Journal  in  Computer  Simulation,  2,  251-
                          286.
                       Steinman, J. (1993). Breathing Time Warp. Proceedings of the 7th Workshop on Parallel
                          and Distributed Simulation (PADS93), 23, 109-118.
                       Steinman, J. (1994). Discrete-Event Simulation and the Event Horizon. Proceedings of
                          the 1994 Parallel and Distributed Simulation Conference, 39-49.
   56   57   58   59   60   61   62   63   64   65   66