Page 12 - Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system
P. 12

Bondy-Denomy et al.                                                                Page 12

                               19. Datsenko KA, et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive
                                  bacterial immunity system. Nat Commun. 2012; 3:945. [PubMed: 22781758]
                               20. Cady KC, O’Toole GA. Non-Identity-Mediated CRISPR-Bacteriophage Interaction Mediated via
                                  the Csy and Cas3 Proteins. J Bacteriol. 2011; 193:3433–3445. [PubMed: 21398535]
                               21. Battle SE, Meyer F, Rello J, Kung VL, Hauser AR. Hybrid pathogenicity island PAGI-5 contributes
                                  to the highly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J Bacteriol.
                                  2008; 190:7130–7140. [PubMed: 18757543]
                               22. Cady KC, et al. Prevalence, conservation and functional analysis of Yersinia and Escherichia
                                  CRISPR regions in clinical Pseudomonas aeruginosa isolates. Microbiology. 2011; 157:430–437.
                               23. Semenova E, et al. Interference by clustered regularly interspaced short palindromic repeat
                                  (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci USA. 2011; 108:10098–
                                  10103. [PubMed: 21646539]
                               24. Wiedenheft B, et al. RNA-guided complex from a bacterial immune system enhances target
                                  recognition through seed sequence interactions. Proc Natl Acad Sci USA. 2011; 108:10092–
                                  10097. [PubMed: 21536913]
                               25. Zegans ME, et al. Interaction between bacteriophage DMS3 and host CRISPR region inhibits
     CIHR Author Manuscript
                                  group behaviors of Pseudomonas aeruginosa. J Bacteriol. 2009; 191:210–219. [PubMed:
                                  18952788]
                               26. Heo YJ, Chung IY, Choi KB, Lau GW, Cho YH. Genome sequence comparison and superinfection
                                  between two related Pseudomonas aeruginosa phages, D3112 and MP22. Microbiology. 2007;
                                  153:2885–2895. [PubMed: 17768233]
                               27. Chung IY, Cho YH. Complete Genome Sequences of Two Pseudomonas aeruginosa Temperate
                                  Phages, MP29 and MP42, Which Lack the Phage-Host CRISPR Interaction. J Virol. 2012;
                                  86:8336. [PubMed: 22787268]
                               28. Wang PW, Chu L, Guttman DS. Complete sequence and evolutionary genomic analysis of the
                                  Pseudomonas aeruginosa transposable bacteriophage D3112. J Bacteriol. 2004; 186:400–410.
                                  [PubMed: 14702309]
                               29. Aziz RK, et al. The RAST Server: rapid annotations using subsystems technology. BMC
                                  Genomics. 2008; 9:75. [PubMed: 18261238]
                               30. Larkin MA, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23:2947–2948.
                                  [PubMed: 17846036]
                               31. Qiu D, Damron FH, Mima T, Schweizer HP, Yu HD. PBAD-Based Shuttle Vectors for Functional
                                  Analysis of Toxic and Highly Regulated Genes in Pseudomonas and Burkholderia spp and Other
     CIHR Author Manuscript
                                  Bacteria. Applied and Environmental Microbiology. 2008; 74:7422–7426. [PubMed: 18849445]






















     CIHR Author Manuscript






                                      Nature. Author manuscript; available in PMC 2016 July 04.
   7   8   9   10   11   12   13   14   15