Page 27 - Ebook Trigonometri_Krisna Hasugian_MESP 2019
P. 27

Example 20)        sin 54° = cos 36°


               How can we use these identities to find exact values of trigonometric functions?


               Follow these examples to find out! Examples 21-26

                   21) Find the exact value of the expression

                       sin² 30°  + cos² 30°
                       Solution: Since sin²    + cos²    = 1, therefore  sin² 30° + cos² 30° = 1

                   22) Find the exact value of the expression
                                   sin 45°
                       tan 45° −
                                  cos 45°
                                          sin 45°
                       Solution: Since (        ) = tan 45°, therefore  tan 45° − tan 45° = 0
                                         cos 45°
                   23) tan 35° ⋅ cos 35° ⋅ csc 35°
                                  sin 35°  cos 35°    1
                       Solution:        ⋅         ⋅       = 1
                                 cos 35°     1     sin 35°
                   24) tan 22° − cot 68°
                       Solution: tan 22° = cot 68°, therefore  cot 68° − cot 68° = 0

                                    2
                   25) cot    = −  , find csc   , where    is in quadrant II
                                    3
                       Solution: Pick an identity that relates cotangent to cosecant, like the

                       Pythagorean identity 1 + cot²    = csc²   .

                               2   2
                       1 + (− )   = csc² θ
                               3
                           4
                       1 +  = csc²   
                           9

                       13  = csc²   
                       9


                       √  = csc   
                        13
                         9


                       √13

                             =  csc   
                        3
                       The positive square root is chosen because csc is positive in quadrant II




                                                                                                           26
   22   23   24   25   26   27   28   29   30   31   32