Page 132 - ISCI’2017
P. 132

equal to zero. In a line of objective function in the F.T. column is a value of size of objective function.

            This value is used for realization of directional searching of the decision on a method of branches and
            borders. Decoding on the basis of a method of branches and borders is iterated that means creation of

            a tree of decisions with tops of minimum values of basic plans. Route by a tree from initial top to
            some fixed top determines the admissible sequence of the choice of integer values for task variables.

            Main goal of decoding by proposed method is receiving integer variables of  x  and  y  at minimum
            possible value of objective function L.



                                            Table 1 - The initial simplex table
                F.V
                               F. T.            w 1    w 2    w 3    w 4      w 2n 3−     w 2n 2−     w 2n 1 −     w 2n
              B.V.                                                      …

               x 0              x * 0            1    -1    0     0     …       0      0       0       0

               x 1              x * 1            0    0     1     -1    …       0      0       0       0

                                                                  …                              

               x n1            x * n1−           0    0     0     0     …       0      0       1       -1
                 −
               x n          (m1 x−−  * 0    )   -1    1     0     0     …       0      0       0       0

              x n1+         (m1 x−−  * 1    )    0    0     -1    1     …       0      0       0       0

                                                                  …                              

              x 2n 1 −     (m1 x−−  * n1−    )   0    0     0     0     …       0      0       -1      1


               y 0         1  ( ax −  *  x +  *    ) b  a     −  a    −  1     1     …
                          m     0   1           m      m     m    m

                                                                  …                              

              y          1  ( ax *  −  x *  +    ) b                    …       a     −  a     −  1     1
                −
               n2
                               −
                                     −
                        m     n3    n 2                                        m        m       m      m
                L                0              -1    -1    -1    -1    …      -1      -1      -1      -1

               Formally the method of branches and borders can be described by the sequence of the following

            stages.















            132
   127   128   129   130   131   132   133   134   135   136   137