Page 158 - ISCI’2017
P. 158

where  ( ) xf   is element value of field  ( ) x .
                                                  f

               Let us bring the row (13) according to module  ( ) xf 1  , as a result we will get:

                               1 , 2 , 3 , ,   f 1 ( ) , -x 1  0 , 1 , 2 , 3 , ,   f 1 ( ) , -x 1  0 , 1 , 2 , 3 ,  f ,  1 ( ) , -x 1  0 , 1 , ,V ,      (14)


            where  0 ≤V  ≤ f 1 ( ) 1.
                              x
                                 −
               Let us present the array (14) as:

                                                1              
                                                                       2
                                                
                                              , 3 , 2 , 1  ,  f 1 ( ) x −  ; 0 , 1      2,1  , 3 ,  ,  f 1 ( ) x − 1 ,0 ;                                     (15)
                                                 z 1 −            
                                                    
                                                                          z
                                                                             ,
                                           ,1    , 2    , 3     ,  f 1 ( ) x −  ; 0 , 1      , 1    ,2    , 3    V ,
                                          ;
                             −
            where V  ≤ f 1 ( ) 1.
                          x
               On the whole there will be sequence elements  z − )1((  f 1 ( ) Vx +   in the PRS (15). Besides in the

                                                                                   x
                                                                                 f
            last unit there will be no sequence elements beginning with ( +V  ) 1  to  ( ) 1 and 0.
                                                                                      −
                                                                                 1
                                                                                     −
                                                                                        0 ,
                                                                                   x
               Farther on symbols  ,   21  , 3 , , V  appear   z  times  + VV  , 1  +  , 2  , f 1 ( ) 1  –  ( −z   ) 1  times.
               Probabilities of elements  ,   21  , 3 , , V  appearance will be correspondingly:
                                                               z
                                                        R 1  =  p n  − 1  ,                                                               (16)


                 V
            and   + V    +  , 2  , f 1 ( ) 1
                      , 1
                                         0 ,
                                   x
                                      −
                                                              z  − 1
                                                        R 2  =  p n  − 1 .                                                              (17)
               Thus symbols  ,1    , 3 , 2  , f 1 ( ) 1−x  0 ,  appear almost with almost equal probability,  i.e. equally


            possible at the period  p n  − 1 as a result of conversion according to the second  ( ) xf 1   module.

               Let us observe the stage of conversion according to the third module, which is according to the

            theorem 1, can be undefined number  ( ) x .
                                                 f
                                                  m
               While analyzing for frequency let us define an array  1,0  , 3 , 2 ,   , f 1 ( ) 1 as
                                                                                  −
                                                                                x
                                                             , 3 , 2 , 1    f ,  1 ( ) x .                                                        (18)

               We will bring (18) together according to module  ( ) xf m   and get the row:

                                , 3 , 2 , 1    f ,  m ( ) x −  , 3 , 2 , 1 , 0 , 1    f ,  m ( ) x −  , 3 , 2 , 1 , 0 , 1    f ,  m ( ) x −  , 3 , 2 , 1 , 0 , 1    V , ,            (19)


            where  0 ≤V  ≤ f m ( ) 1−x  .





            158
   153   154   155   156   157   158   159   160   161   162   163