Page 20 - 091math-wb-w3-(sets)
P. 20
WORKBOOK
2
Example 8: If A = { x : x , x } and B = { x : x 4 , x }, then find A(n ) B and
2
( n A ) B .
DISJOINT SETS:
…………………………………………………………………………………………………………………………………………………
…………………………………………………………………………………………………………………………………………………
A and B are disjoint sets so A B=……
A B
E
Example 9: Find the common elements of sets A = {1, 3, 5, 7}, = {: −4 ≤ < 1 ∧ ∈ }. Are
set A and set B disjoint sets? Why/why not?
REMARK:
1) n (A ∪ B) = n(A) + n (B) – n(A∩B)
2) If A and B are disjoint sets, then (n A ) B ( n A ) ( n ) B
3) If A B, then A B B and A B A .
4) A A B and B A B .
20 091math-wb-w3-(sets)