Page 34 - 091math-wb-w3-(sets)
P. 34

WORKBOOK

                                                       EXERCISE 4


       1)  Given that A = {x | 48 < x ≤ 800, x = 4n, n ∈ ℕ} and      5)  Given that  (s A  B  ) 24  ,  (s A  B  ) 4
           B = {y | y ≤ 750, y = 3k, k ∈ ℕ}. What is the value         and  ( )s A   s ( ) 30B   . Find the number of
           of n (A ∩ B)?                                               the elements of the universal set.


               (    ) 94   (   ) 80  (   ) 72  (   ) 67  (   ) 58






                                                                   6)   Let A, B, and C be subsets of U. If
                                                                       (A B C)     , A B A C    ,n(B) 17
                                                                                                         
                                                                          
       2)  U represents the universal set. If n(U) = 22, n(A’) =       n(C ) 15,n((B C) ) 23        , find n(A).
           8, n(A) + n(B’) = 34, then what is the value of s(B)?

               (    ) 1  (    ) 2  (    ) 3  (    ) 4  (    ) 5




                                                                     7)  Let A and B be any two subsets of U
                                                                        different from empty set. Simplify the

                                                                        following expressions as much as possible.


       3)  Given that A ⊄ B, B ⊄ A, n(A ∩ B) = 5 and   n(A ∪                a.   (A B)    (A B )     .
           B) = 14. Find the maximum value of n(B)

               (   ) 10     (    ) 11  (   ) 12   (   ) 13   (   ) 14

                                                                                                          
                                                                            b.  A B      A  U B    
                                                                                                         





                                                                     8)  Let A and B be any two sets. If
       4)  Given that K ∩ L ∩ M ≠ ∅, n(K) = 13, n(L) = 11. Find         n(A B ) 6,n((A B) ) 14          , find n(A’).
                                                                           
           the maximum value of n[(K ∪ L) – M].


















                                                        34                                 091math-wb-w3-(sets)
   29   30   31   32   33   34   35   36   37   38   39