Page 161 - FULL REPORT 30012024
P. 161

Khalib, A. M. (2022). Stroke: The Faster You Act, The More Of The Person You

                               Save.   CodeBlue.    https://codeblue.galencentre.org/2022/03/25/stroke-the-

                               faster-you-act-the-more-of-the-person-you-save/


                        Kong, H. (2019). Managing Unstructured Big Data in Healthcare System. Healthcare
                               Informatics Research, 25(1), 1. https://doi.org/10.4258/hir.2019.25.1.1



                        Kuriakose, D., & Xiao, Z. (2020). Pathophysiology and Treatment of Stroke: Present
                               Status and Future Perspectives. International Journal of Molecular Sciences,

                               21(20), 7609. https://doi.org/10.3390/ijms21207609


                        Li, H. (2021). Research on Big Data Analysis Data Acquisition and Data Analysis.

                               https://www.semanticscholar.org/paper/Research-on-Big-Data-Analysis-
                               Data-Acquisition-and-Li/4d5c070675643e1f6bb6d3b906c23186777d7b7b


                        Li, Y., Zhang, X., Sang, H., Niu, X., Liu, T., Liu, W., & Li, J. (2019). Urban-rural

                               differences in risk factors for ischemic stroke in northern China. Medicine,
                               98(21), e15782. https://doi.org/10.1097/md.0000000000015782



                        Lip,  G.  Y.,  Genaidy,  A.,  Tran,  G.,  Marroquin,  P.,  Estes,  C.,  &  Sloop,  S.  (2021).
                               Improving Stroke Risk Prediction in the General Population: A Comparative

                               Assessment  of  Common  Clinical  Rules,  a  New  Multimorbid  Index,  and
                               Machine-Learning-Based Algorithms. Thrombosis and Haemostasis, 122(01),

                               142–150. https://doi.org/10.1055/a-1467-2993


                        McDonald,  L.,  Ramagopalan,  S.  V.,  Cox,  A.,  &  Oguz,  M.  (2017).  Unintended

                               consequences  of  machine  learning  in  medicine?  F1000Research,  6,  1707.
                               https://doi.org/10.12688/f1000research.12693.1











                                                               144
   156   157   158   159   160   161   162   163   164   165   166