Page 179 - FULL REPORT 30012024
P. 179

accuracy = accuracy_score(y_test, y_pred)
                        precision = precision_score(y_test, y_pred)
                        recall = recall_score(y_test, y_pred)
                        f1 = f1_score(y_test, y_pred)

                        # confusion matrix
                        cm = confusion_matrix(y_test, y_pred)

                        # Save model and label encoders
                        dump(model, 'trained_model.joblib')
                        dump(le_gender, 'le_gender.joblib')
                        dump(le_smoking_status, 'le_smoking_status.joblib')
                        dump(le_ever_married, 'le_ever_married.joblib')
                        dump(le_work_type, 'le_work_type.joblib')
                        dump(le_Residence_type, 'le_Residence_type.joblib')
                        dump(le_age_category, 'le_age_category.joblib')
                        dump(le_bmi_category, 'le_bmi_category.joblib')

                        # Model evaluation metrics and confusion matrix
                        print("Model Evaluation:")
                        print(f"Accuracy: {accuracy:.2f}")
                        print(f"Precision: {precision:.2f}")
                        print(f"Recall: {recall:.2f}")
                        print(f"F1 Score: {f1:.2f}")
                        print("\nConfusion Matrix:")
                        print(cm)
                        print(data)
                        sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
                        plt.title('Confusion Matrix Heatmap')
                        plt.show()


                        print("Model and label encoders saved.")






















                                                               162
   174   175   176   177   178   179   180   181   182   183   184