Page 7 - Tourism Flows Prediction based on an Improved Grey GM(1,1) Model
P. 7

Xiangyun Liu et al.  /  Procedia - Social and Behavioral Sciences   138  ( 2014 )  767 – 775   773
                                                            1564   k
                                    x  1     k  1     273239  54739e 0   5      105910  74739                                     (18)
            According to  formula  (17), (18), the sequence  x ̑  (0)   can be obtained as  the output of the predictive value of
          Zhejiang's tourism demand for 2007-2012.  x ̑  (0) (1)=19100, x ̑  (0) (2)=21164.20, x ̑  (0) (3)=24748.22,  x ̑  (0) (4)=28939.18,
          x ̑  (0) (5)=33839.85, x ̑  (0) (6)=39570.41.


          5.2. Model evaluation
            There are generally three methods to test the gray model: residual test, correlation test and posterior error test,
          this study mainly adopts residual test and posterior error test.
            (1)residual test
            Calculating residuals and get residual sequence:
                                             ­    e      1  e    2  "  e  n      x  0      x     0
                                             °E
                                                            ®                                                              (19)
                                                              0
                                                    0


                                             ¯
                                             ° ie       x   i     x   i   i     21   "   n
                                                   (0)
          δ(i) reprents the relative error between actual value x (i) and model values x ̑  (0) (i).


















                                Fig.1. Zhejiang domestic tourism curve between actual and predicted values
                                                          0
                                                  x  0   (i     x     i
                                             G  i            u  100                                                                   (20)
                                                     x  0    i
          δ(i) is believed qualified residuals that less than 10%.
            (2)Posterior error test
                                           2
                                                                       2
                              (0)
            Actual data sequence X , Variance S  1 , Residuals sequence e, Variance S   2 , then:
                                        2   1  n    0      0   2
                                       S      ¦   x   i     x                                                                               (21)
                                        1
                                            n    i 1
                                          ­    0   1  n    0
                                          ° x    ¦ x   i
                                          °      n    i 1
                                                1
                                                   n
                                  Where      °  2    ¦ e     i     e  2                                                                              (22)
                                          ® S
                                          °  2  n    i 1
                                          °    1  n
                                          °e    ¦ e     i     e  2
                                          ¯    n    i 1
            Calculated posterior error ratio is: C=S 2  ⁄ S 1 .
            Calculated small error: p=p{|e(i)-ē|<0.6745S 1 }, then get the process of this model; the result is in Table 2.
   2   3   4   5   6   7   8   9