Page 516 - Algebra 1
P. 516

d. 2√ 6x   √ 4x
SOLUTION
2 √ 6 x   √ 4 x √  
= 2 24x2 = 4x√6 
Multiply. Simplify.
Applying the Distributive Property
Example
2
Simplify.
a. √ 2(3 + √ 6) SOLUTION
√ 2 ( 3 + √ 6 ) = 3√2 + √1 2 = 3√2 + 2√3 
b. √ 2(√ 6 - √ 9) SOLUTION
Caution
A number outside the radical and the radicand cannot be multiplied.
2   √  3 ≠ √  6 2   √  3 = 2 √ 3  
Use the Distributive Property. Simplify.
Use the Distributive Property. Simplify.
Multiplying Binomials with Radicals
√2 (√6 - √9 ) = √1 2 - √1 8 = 2√3 - 3√2 
Simplify.
a. (4 + √ 9)(2 - √ 6) SOLUTION
(4 + √9 )(2 - √6 )
= 8 - 4√6 + 2√9 - √5 4 = 8 - 4√6 + 6 - 3√6 
= 14 - 7√6 
b . ( 6 - √  3 ) 2 SOLUTION
( 6 - √ 3 ) 2
= 36 - 12√3 + √9  = 39 - 12√3 
Use the Distributive Property or FOIL. Simplify the radicals.
Simplify by combining like terms.
Use the square of a binomial pattern. Simplify the radical and combine like terms.
Example
3
Lesson 76 501


































































































   514   515   516   517   518