Page 96 - rise 2017
P. 96
Conclusions
The DSC technique combined with PCA was successful to differentiate between plastic-adulterated
frying oils and non-adulterated frying oils. However, further studies are needed to execute the
approach reported in this study to various food types.
Acknowledgements
The authors are grateful for financial support under the Research University Grant Scheme (RUGS)
(project No: RIGS16-068-0232) from International Islamic University Malaysia, Gombak, Selangor,
Malaysia.
References
[1] J. M. N. Marikkar, O. M. Lai, H. M. Ghazali, Y. B. Che Man, Compositional and thermal analysis
of RBD palm oil adulterated with lipase-catalyzed interesterified lard, Food Chem., 76 (2002) 249–
258.
[2] A. Rohman, Y. B. C. Man, Fourier transform infrared (FTIR) spectroscopy for analysis of extra
virgin olive oil adulterated with palm oil, Food Res. Int., 43 (2010) 886–892.
[3] L. Dymińska et al., Quantitative determination of the iodine values of unsaturated plant oils using
infrared and Raman spectroscopy methods, Int. J. Food Prop., 2912 (2016) 1–13.
[4] C. P. Tan, Y. B. Che Man, Differential scanning calorimetric analysis of edible oils: Comparison
of thermal properties and chemical composition, J. Am. Oil Chem. Soc., 77 (2000) 143–155.
[5] S. M. Dyszel, S. K. Baish, Characterization of tropical oils by DSC, Thermochim. Acta, 212
(1992) 39–49.
[7] F. Kotti, E. Chiavaro, L. Cerretani, C. Barnaba, M. Gargouri, A. Bendini, Chemical and thermal
characterization of Tunisian extra virgin olive oil from Chetoui and Chemlali cultivars and different
geographical origin, Eur. Food Res. Technol., 228 (2009) 735–742.
[8] M. Jafari, M. Kadivar, J. Keramat, Detection of adulteration in Iranian olive oils using
instrumental (GC, NMR, DSC) methods, JAOCS, J. Am. Oil Chem. Soc., 86 (2009) 103–110.
[9] I. Bodurov, I. Vlaeva, M. Marudova, T. Yovcheva, K. Nikolova, Detection of adulteration in olive
oils using optical and thermal methods, Bulg. Chem. Commun. 45 (2013) 81–85.
[10] L. O. C. Erretani et al., Monovarietal Extra Virgin Olive Oils. Correlation between Thermal
Properties and Chemical Composition: Heating Thermograms, J. Agric. Food Chem., 56 (2008) 496–
501.
[11] H. K. Lim, C. P. Tan, R. Karim, A. A. Ariffin, J. Bakar, Chemical composition and DSC thermal
properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus,
Food Chem., 119 (2010) 1326–1331.
[12] J. M. N. Marikkar, M. H. Dzulkifly, M. Z. N. Nadiha, Y. B. C. Man, Detection of Animal Fat
Contaminations in Sunflower Oil By Differential Scanning Calorimetry, Int. J. Food Prop., 15 (2012)
683–690.
[13] A. M. Marina, Y. B. Che Man, S. A. H. Nazimah, I. Amin, Monitoring the adulteration of virgin
coconut oil by selected vegetable oils using differential scanning calorimetry, J. Food Lipids, 16
(2009) 50–61.
[14] J. Mohammed, N. Marikkar, S. Rana, Use of Differential Scanning Calorimetry to Detect Canola
Oil ( Brassica napus L .) Adulterated with Lard Stearin, J. Oleo Sci., 873 (2014) 867–873.
[15] X. Zhang, X. Qi, M. Zou, F. Liu, Rapid Authentication of Olive Oil by Raman Spectroscopy
Using Principal Component Analysis, Anal. Lett., 44 (2011) 2209–2220.
[16] N. A. M. Yanty, J. M. N. Marikkar, Y. B. C. Man, K. Long, Composition and thermal analysis
of lard stearin and lard olein, J. Oleo Sci., 60 (2011) 333–338.
[17] M. Cocchi, M. L. Vigni, C. Durante, Chemometrics - Bioinformatics, in Food Authentication,
Chichester, UK: John Wiley & Sons, Ltd, 2017, pp. 481–518.
[18] L. Peng, Y. Wang, H. Zhu, Q. Chen, Fingerprint profile of active components for Artemisia
selengensis Turcz by HPLC-PAD combined with chemometrics, Food Chem., 125 (2011) 1064–1071.