Page 96 - rise 2017
P. 96

Conclusions
             The DSC technique combined with PCA was successful to differentiate between plastic-adulterated
             frying  oils  and  non-adulterated  frying  oils.  However,  further  studies  are  needed  to  execute  the
             approach reported in this study to various food types.

             Acknowledgements
             The authors are grateful for financial support under the Research University Grant Scheme (RUGS)
             (project No: RIGS16-068-0232) from International Islamic University Malaysia, Gombak, Selangor,
             Malaysia.

             References
             [1] J. M. N. Marikkar, O. M. Lai, H. M. Ghazali, Y. B. Che Man, Compositional and thermal analysis
             of RBD palm oil adulterated with lipase-catalyzed interesterified lard, Food Chem., 76 (2002) 249–
             258.
             [2] A. Rohman, Y. B. C. Man, Fourier transform infrared (FTIR) spectroscopy for analysis of extra
             virgin olive oil adulterated with palm oil,  Food Res. Int.,  43 (2010) 886–892.
             [3] L. Dymińska et al., Quantitative determination of the iodine values of unsaturated plant oils using
             infrared and Raman spectroscopy methods, Int. J. Food Prop., 2912 (2016) 1–13.
             [4] C. P. Tan, Y. B. Che Man, Differential scanning calorimetric analysis of edible oils: Comparison
             of thermal properties and chemical composition,  J. Am. Oil Chem. Soc., 77 (2000) 143–155.
             [5]  S.  M.  Dyszel,  S.  K.  Baish,  Characterization  of  tropical  oils  by  DSC,  Thermochim.  Acta,  212
             (1992) 39–49.
             [7] F. Kotti, E. Chiavaro, L. Cerretani, C. Barnaba, M. Gargouri, A. Bendini, Chemical and thermal
             characterization of Tunisian extra virgin olive oil from Chetoui and Chemlali cultivars and different
             geographical origin, Eur. Food Res. Technol.,  228 (2009) 735–742.
             [8]  M.  Jafari,  M.  Kadivar,  J.  Keramat,  Detection  of  adulteration  in  Iranian  olive  oils  using
             instrumental (GC, NMR, DSC) methods, JAOCS, J. Am. Oil Chem. Soc., 86 (2009) 103–110.
             [9] I. Bodurov, I. Vlaeva, M. Marudova, T. Yovcheva, K. Nikolova, Detection of adulteration in olive
             oils using optical and thermal methods,  Bulg. Chem. Commun. 45 (2013) 81–85.
             [10]  L.  O.  C.  Erretani  et  al.,  Monovarietal  Extra  Virgin  Olive  Oils.  Correlation  between  Thermal
             Properties and Chemical Composition: Heating Thermograms, J. Agric. Food Chem., 56 (2008) 496–
             501.
             [11] H. K. Lim, C. P. Tan, R. Karim, A. A. Ariffin, J. Bakar, Chemical composition and DSC thermal
             properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus,
             Food Chem., 119 (2010) 1326–1331.
             [12] J. M. N. Marikkar, M. H. Dzulkifly, M. Z. N. Nadiha, Y. B. C. Man, Detection of Animal Fat
             Contaminations in Sunflower Oil By Differential Scanning Calorimetry,  Int. J. Food Prop., 15 (2012)
             683–690.
             [13] A. M. Marina, Y. B. Che Man, S. A. H. Nazimah, I. Amin, Monitoring the adulteration of virgin
             coconut  oil  by  selected  vegetable  oils  using  differential  scanning  calorimetry,  J.  Food  Lipids,  16
             (2009) 50–61.
             [14] J. Mohammed, N. Marikkar, S. Rana, Use of Differential Scanning Calorimetry to Detect Canola
             Oil ( Brassica napus L .) Adulterated with Lard Stearin, J. Oleo Sci., 873 (2014) 867–873.
             [15] X. Zhang, X. Qi, M. Zou, F. Liu, Rapid Authentication of Olive Oil by Raman Spectroscopy
             Using Principal Component Analysis, Anal. Lett., 44 (2011) 2209–2220.
             [16] N. A. M. Yanty, J. M. N. Marikkar, Y. B. C. Man,  K. Long, Composition and thermal analysis
             of lard stearin and lard olein, J. Oleo Sci., 60 (2011) 333–338.
             [17] M. Cocchi, M. L. Vigni, C. Durante, Chemometrics - Bioinformatics, in Food Authentication,
             Chichester, UK: John Wiley & Sons, Ltd, 2017, pp. 481–518.
             [18] L. Peng, Y. Wang, H. Zhu,  Q. Chen, Fingerprint profile of active components for Artemisia
             selengensis Turcz by HPLC-PAD combined with chemometrics, Food Chem., 125 (2011) 1064–1071.
   91   92   93   94   95   96   97   98   99   100   101