Page 306 - J. C. Turner - History and Science of Knots
P. 306

296                     History and Science of Knots

                                (1993) 43 pp.
                Pamphlet No. 10, Special Braid Forms Pt. 1, End-Keepers and
                                Mid-Keepers (1995) 176 pp.
                                Special Braid Forms Pt. 2, CFC and CWH Braids
                                (1995) 196 pp.
                Pamphlet No. 11, Braiding Application-Bridle and Reins
                                (1995 in preparation).
                Pamphlet No. 12, The Braiding of Wheelknots (1994) 110 pp.
                     Supplement to No. 12, Wheelknots (1995) 49 pp.
                Pamphlet No. 13, The Braiding of Long Regular Knots with the
                                Maximum Number of Free-run Half-cycles
                                (1995) 50 pp.
             16. A. G. Schaake, T. Hall, and J. C. Turner, BRAIDING-STANDARD
                HERRINGBONE KNOTS [Book 3/1 of Series on Braiding]
                (University of Waikato, Hamilton, N.Z., 1992) 208 pp.
             17. A. G. Schaake, J. C. Turner and D. A. Sedgwick, BRAIDING-
                REGULAR KNOTS [Book 1/1 of Series on Braiding]
                (University of Waikato, Hamilton, N.Z., 1988) 117 pp.
             18. A. G. Schaake, J. C. Turner and D. A. Sedgwick,  BRAIDING-
                REGULAR FIADOR KNOTS [Book 2/1 of Series on Braiding]
                (University of Waikato, Hamilton, N.Z., 1990) 159 pp.
             19. A. G. Schaake, J. C. Turner and D. A. Sedgwick,  BRAIDING-
                STANDARD HERRINGBONE PINEAPPLE KNOTS [Book 4/1 of
                Series on Braiding]
                (University of Waikato, Hamilton, N.Z., 1991) 202 pp.
             20. A. G. Schaake and J. C. Turner, [Research Report Series]
                RR 1/1, A New Theory of Braiding (Department of Mathematics, Uni-
                versity of Waikato, Hamilton, N.Z., Report 165, 1988) 42 pp.
             21. A. G. Schaake and J. C. Turner, [Research Report Series]
                RR 1/2, A New Theory of Braiding (Department of Mathematics, Uni-
                versity of Waikato, Hamilton, N.Z., Report 168, 1988) 41 pp.
             22. A. G. Schaake and J. C. Turner, New Methods for solving Quadratic
                Diophantine Equations: Part I - Investigations of Rational Num-
                bers Using Rooted Trees and other Directed graphs; Part II - The
                Pythagorean Triples
                (Department of Mathematics, University of Waikato, Hamilton, N.Z.,
                Report 168, 1989) 99 pp.
             23. A. G. Schaake and J. C. Turner, Generalizing Euclid's Algorithm, via
                the Regular and Mobius Knot Tree-Order-n Arithmetics
                (Department of Mathematics, University of Waikato, Hamilton, N.Z.,
                Report 196, 1990) 61 pp.
             24. A. G. Schaake and J. C. Turner, A New Chapter for Pythagorean Triples
   301   302   303   304   305   306   307   308   309   310   311