Page 27 - Buku Paket Kelas 11 Matematika
P. 27

           Karena 11k – 6 habis dibagi 5, maka dapat kita misalkan 11k – 6 = 5m, untuk m bilangan bulat positif. Akibatnya, 11k = 5m + 6.
Bentuk 11k + 1 – 6 = 11k(11) – 6,
= (5m + 6)(11) – 6 (karena 11k = 5m + 6) = 55m + 60
= 5(11m + 12).
Dengan demikian P(k + 1) = 11(k + 1) – 6 dapat dinyatakan sebagai kelipatan 5, yaitu 5(11m + 12).
Jadi benar bahwa P(k + 1) = 11(k + 1) – 6 habis dibagi 5.
Karena P(n) = 11n – 6 memenuhi kedua prinsip induksi matematika, maka terbukti P(n) = 11n – 6 habis dibagi 5, untuk n bilangan asli.
Contoh 1.6
Untuk n bilangan asli, x ≠ y, buktikan dengan induksi matematika bahwa xn – yn habis dibagi (x – y).
Alternatif Penyelesaian:
Misalkan P(n) = xn – yn.
Untuk membuktikan P(n) = xn – yn habis dibagi (x – y), artinya P(n) dapat dituliskan sebagai kelipatan x – y. Oleh karena itu, akan ditunjukkan P(n) = xn – yn memenuhi kedua prinsip induksi matematika.
a) Langkah Awal
Untuk n = 1, sangat jelas bahwa x – y = (x – y) × 1.
Demikian halnya untuk n = 2 diperoleh bahwa x2 – y2 = (x – y)(x + y). Artinya jelas bahwa P(2) = x2 – y2 habis dibagi (x – y).
b) Langkah Induksi
Pada bagian langkah induksi, kita peroleh bahwa P(2) benar. Karena P(2) benar, maka P(3) juga benar. Namun, perlu kita selidiki pola hasil bagi yang diperoleh untuk n ≥ 3.
• Untuk n = 3, maka x3 – y3 = (x – y)(x2 + xy + y2).
• Untuk n = 4, maka x4 – y4 = (x – y)(x3 + x2y + xy2 + y3).
• Untuk n = 5, maka x5 – y5 = (x – y)(x4 + x3y + x2y2 + xy3 + y4).
         MATEMATIKA 19
      













































































   25   26   27   28   29