Page 255 - MATHEMATICS COURSE FOR SECONDARY SCHOOLS BOOK 2
P. 255

          EXA
If A = ( 7 -2 ) 5 8
(a) A 􏰁 B
EXERCISE 12.1
Note that:
(a) A + B (c) A – B
=
MPLE 3
Alternatively:
=
4. If P = ( 9 6)and Q =( 4 1), determine: 35 70
)
(b) B – A =( -3 9 ) 􏰁( 7 -2 ) 4 0 5 8
=(-3 9 ) + (-7 2) 40 -5-8
(a) A – B = (7 -2 58
-3 4
9 0
(a) P + Q (c) P – Q
5. Given that A = (9 evaluate:
(a) A + B
(b) Q + P (d) Q – P
B = (7 4),
(b) B + A (d) B – A
-1), calculate: (b) Q + P
(d) Q – P
and B = ( -3 9 ), find 4 0
( 5 7 )
( 4 3 )
(b) B + A (d) B – A
(b) B 􏰁 A (7 -2)􏰁(-3 9 )
determine:
(a) A + B
(c) A – B
(a) A􏰁B
(b) B􏰁A
A 􏰁 B 􏰂 B 􏰁 A
The subtraction of matrices is not commutative.
=
=
=
=
=
=
=
58
40
(7 - [-3] -2 - 9 5- 4 8 - 0
)
-3 - 7 9 - [-2] 5+ 9 0 - 8
)( (b) B + A
(-10 -11 ) -1 -8
28
5 , find: 76
)􏰁(
=(7 -2 ) + (3 - 9 )
5 - 8 -4 - 0
() 5 +[-4] 8 + 0
7 + 3 -2 + [-9]
=(-10 -2 - 9 ) 5- 4 8
= (10 -11) 18
5) and
(-3 +[-7] = 4 +[-5]
=(-3 -7 4 - 5
9 + 2 ) 0 + [-8]
11 ) 0 -8
(c) A – B
6. If P = (-9 4) and Q = (3
(a) P + Q (c) P – Q
= (-10 11) -1 -8
249
1. Given that A = 1 0 and B = 8 2
(7 + 3 -11 ) 2. If P =( 7 4) and Q =( 2 5), evaluate: 183961
(10 -11
)
(a) P + Q
( -3 9 )􏰁 ( 7 -2 ) (c) P – Q 4058
(b) Q + P (d) Q – P
18
3. Given that A = 9 ()()
1 and B = 3
(d) B – A
        

















   253   254   255   256   257