Page 256 - MATHEMATICS COURSE FOR SECONDARY SCHOOLS BOOK 2
P. 256
7. Given A =
(a) A + B
, determine: (b) B + A
determine: (a) P + Q
(c) P – Q
11. Given that A determine:
(a) A + B (c) A – B
16. If P =
(a) P + I
0 0 and I = 0 0
(
)(
)
(-2 4) (0 -5) 13. Given that P = and Q = ,
evaluate:
(a) P + Q
(c) P – Q
14. If P = ( 3 -4 ) and Q =( -2 1 ) , determine:
(c) A – B
8. If P =( 8 ) and Q =( 3
(d) B – A ), evaluate:
(b) Q + P (d) Q – P
(b) Q + P (d) Q – P
-2
(a) P + Q
(c) P – Q
9. Given that A =(5 calculate: 7
(a) A + B
9
)and B =
76 (a) P + Q
08
(b) Q + P
(c) A –
10. If P = (-9 57
7 5
and B = -2
3 -5
61
4 8
(3 6
2 ), 0
(d) Q – P (-3 5) (0 0)
B
4 ) and Q = ( 3 -1 ),
(c) A – I (3 -5
8
(b) B + A (d) B – A
64
0 -2
)() (d) I – P
(b) Q + P (d) Q – P
(c) P – I
(b) B + A (d) B – A
Under scalar multiplication, each element in the matrix is multiplied by the scalar quantity (or constant).
250
(c) P – Q
15. Given A = (a) A + I
and I = 0 0 (b) I + A
(d) I – A
, find:
74
, evaluate: (b) I + P
-3 ) and B = ( 4
(b) B + A (d) B – A
SCALAR MULTIPLICATION
Given that A =(a b ) and a constant k, cd
Then kA = k (a b ) cd
= ( 5
21 -13
12. If A =(2 -3 ) and B = (1 -5), calculate: 41 73
(a) A + B (c) A – B
= (k x a k xc
So kA = (k a kc
k x b ) k xd
k b ) kd
2 ),