Page 465 - eProceeding for IRSTC2017 and RESPeX2017
P. 465

M. Dwi Trisna / JOURNAL ONLINE JARINGAN COT POLIPD




                 Geometry of balade from inside:
                 q.  Central radius of the blade curvature
                            2
                     R  = R  R 2   / 1  2  (mm)                                             (17)
                            2    3
                 r.  Central angle of  the blades radius

                                 R
                        = arc.Sin   3
                                 R                                                             (18)

                                 R 2   R   R 2  
                       = arc.Cos    1      3  
                      1
                                      R . 2  1  R .  
                       =  .    1
                       2
                 s.  Length of bowstring (AB)

                               2
                     AB  =  R   R     . 2 R 2 .R 1 .Cos  2    (mm).                       (19)
                                    2
                                    1
                               2
                 t.  Angle of blades curvature
                                  .2 R 2   AB 
                        = arc.Cos    3  2  
                                    2R 3                                                     (20)


                 u.  Jari-jari pusat titik berat sudu
                                  0
                        1 2  .   180      1                                            (21)
                                       1
                       2
                                 2
                     R    R   R    . 2 R .R 3 .Cos  .
                            2
                                 3
                       4
                 Geometry of blades from outside
                 v.  Length of C, (mm)                                                          (22)
                             2
                     C    R   R  2 R R COS(        )
                                   2
                                                       2
                                           2
                                  2
                                         1
                             1
                                                   1
                 w. Value of  :                                                                (23)
                                               
                                   sin    
                                 R
                        arcsin   2    1   2  
                                      c       
                                
                                               
                 x.  Value of  :
                            o
                      = 180  – ( 1 +  2 +  )                                               (24)
                 y.  Value of  :
                                     o
                      =  1 +  2 – (180  - 2 )                                              (25)
                 z.  Value of d (mm):
                                         
                           R sin     
                          
                      d    2     1   2                                                     (26)
                           2sin 180   
                                         
                          
                 aa.  Angle of blades curvatutre:
                            o
                      = 180  – ( 1 +  )                                                     (27)
          464 | V O L 1 0 - I R S T C 2 0 1 7 & R E S P E X 2 0 1 7
   460   461   462   463   464   465   466   467   468   469   470