Page 231 - Avian Virology: Current Research and Future Trends
P. 231
224 | Zheng
in IBDV–host interaction and roles of miRNA in host response Chen, D., Li, Z., Yang, Q., Zhang, J., Zhai, Z., and Shu, H.B. (2003).
Identification of a nuclear protein that promotes NF-kappaB activation.
to IBDV shed light on development of novel vaccines that are Biochem. Biophys. Res. Commun. 310, 720–724.
expected to maintain antigenicity of IBDV without damages to Chen, Y., Lu, Z., Zhang, L., Gao, L., Wang, N., Gao, X., Wang, Y., Li, K., Gao,
BF. There are still some mysteries in the pathogenesis of IBDV Y., Cui, H., et al. (2016). Ribosomal protein L4 interacts with viral protein
infection that need to be deciphered, including the mechanisms VP3 and regulates the replication of infectious bursal disease virus. Virus
Res. 211, 73–78. https://doi.org/10.1016/j.virusres.2015.09.017.
of IBDV replication in host cell, the roles of viral components in Clayton, S.A., Jones, S.W., Kurowska-Stolarska, M., and Clark, A.R. (2018).
host response and the underlying mechanisms, and the initiation The role of microRNAs in glucocorticoid action. J. Biol. Chem. 293,
of cellular miRNA response to IBDV infection. The more we 1865–1874. https://doi.org/10.1074/jbc.R117.000366.
know about the pathogenesis of IBDV infection, the closer we are Conner, S.D., and Schmid, S.L. (2003). Regulated portals of entry into the
cell. Nature 422, 37–44. https://doi.org/10.1038/nature01451.
to success in development of optimal vaccines via manipulation Cubas-Gaona, L.L., Diaz-Beneitez, E., Ciscar, M., Rodríguez, J.F., and
of reverse genetic system or other modern techniques. Rodríguez, D. (2018). Exacerbated apoptosis of cells infected with
infectious bursal disease virus upon exposure to interferon alpha. J. Virol.
92, e00364–18.
Acknowledgements Cui, D., Zhang, J., Zuo, Y., Huo, S., Zhang, Y., Wang, L., Li, X., and Zhong,
This work was supported by grants from the National Natural F. (2018). Recombinant chicken interleukin-7 as a potent adjuvant
Science Foundation of China (#31430085 and Earmarked increases the immunogenicity and protection of inactivated infectious
Fund for Modern Agro-industry Technology Research System bursal disease vaccine. Vet. Res. 49, 10. https://doi.org/10.1186/
(#NYCYTX-41). s13567-017-0497-3.
Cuperus, T., Coorens, M., van Dijk, A., and Haagsman, H.P. (2013). Avian
host defense peptides. Dev. Comp. Immunol. 41, 352–369.
References Darteil, R., Bublot, M., Laplace, E., Bouquet, J.F., Audonnet, J.C., and Rivière,
Aricibasi, M., Jung, A., Heller, E.D., and Rautenschlein, S. (2010). M. (1995). Herpesvirus of turkey recombinant viruses expressing
Differences in genetic background influence the induction of innate and infectious bursal disease virus (IBDV) VP2 immunogen induce
acquired immune responses in chickens depending on the virulence protection against an IBDV virulent challenge in chickens. Virology 211,
of the infecting infectious bursal disease virus (IBDV) strain. Vet. 481–490.
Immunol. Immunopathol. 135, 79–92. https://doi.org/10.1016/j. Delgui, L., Oña, A., Gutiérrez, S., Luque, D., Navarro, A., Castón, J.R., and
vetimm.2009.11.005. Rodríguez, J.F. (2009). The capsid protein of infectious bursal disease
Arnold, M., Durairaj, V., Mundt, E., Schulze, K., Breunig, K.D., and Behrens, virus contains a functional alpha 4 beta 1 integrin ligand motif. Virology
S.E. (2012). Protective vaccination against infectious bursal disease virus 386, 360–372. https://doi.org/10.1016/j.virol.2008.12.036.
with whole recombinant Kluyveromyces lactis yeast expressing the viral Dey, S., Chellappa, M.M., Pathak, D.C., Gaikwad, S., Yadav, K.,
VP2 subunit. PLOS ONE 7, e42870. https://doi.org/10.1371/journal. Ramakrishnan, S., and Vakharia, V.N. (2017). Newcastle Disease Virus
pone.0042870. Vectored Bivalent Vaccine against Virulent Infectious Bursal Disease and
Ayroldi, E., and Riccardi, C. (2009). Glucocorticoid-induced leucine zipper Newcastle Disease of Chickens. Vaccines 5, E31.
(GILZ): a new important mediator of glucocorticoid action. FASEB J. Di, Marco, B., Massetti, M., Bruscoli, S., Macchiarulo, A., Di Virgilio,
23, 3649–3658. https://doi.org/10.1096/fj.09-134684. R., Velardi, E., Donato, V., Migliorati, G., and Riccardi, C. (2007).
Azad, A.A., Barrett, S.A., and Fahey, K.J. (1985). The characterization and Glucocorticoid-induced leucine zipper (GILZ)/NF-kappaB interaction:
molecular cloning of the double-stranded RNA genome of an Australian role of GILZ homo-dimerization and C-terminal domain. Nucleic Acids
strain of infectious bursal disease virus. Virology 143, 35–44. Res. 35, 517–528.
Banda, A., and Villegas, P. (2004). Genetic characterization of very virulent Dobos, P., Hill, B.J., Hallett, R., Kells, D.T., Becht, H., and Teninges, D.
infectious bursal disease viruses from Latin America. Avian Dis. 48, (1979). Biophysical and biochemical characterization of five animal
540–549. https://doi.org/10.1637/7157-12304R. viruses with bisegmented double-stranded RNA genomes. J. Virol. 32,
Bayliss, C.D., Peters, R.W., Cook, J.K., Reece, R.L., Howes, K., Binns, M.M., 593–605.
and Boursnell, M.E. (1991). A recombinant fowlpox virus that expresses Dulwich, K.L., Giotis, E.S., Gray, A., Nair, V., Skinner, M.A., and Broadbent,
the VP2 antigen of infectious bursal disease virus induces protection A.J. (2017). Differential gene expression in chicken primary B cells
against mortality caused by the virus. Arch. Virol. 120, 193–205. infected ex vivo with attenuated and very virulent strains of infectious
Behring, E.V. (1967). 1901-Biographical: Nobel Lectures, Physiology or bursal disease virus (IBDV). J. Gen. Virol. 98, 2918–2930. https://doi.
Medicine 1901–1921 (Elsevier Publishing Company, Amsterdam). org/10.1099/jgv.0.000979.
Available online: http://www.nobelprize.org/nobel_prizes/ medicine/ Eldaghayes, I., Rothwell, L., Williams, A., Withers, D., Balu, S., Davison, F.,
laureates/1901/ behring-bio.html. Accessed 9 September 2014. and Kaiser, P. (2006). Infectious bursal disease virus: strains that differ
Birghan, C., Mundt, E., and Gorbalenya, A.E. (2000). A non-canonical lon in virulence differentially modulate the innate immune response to
proteinase lacking the ATPase domain employs the ser-Lys catalytic dyad infection in the chicken bursa. Viral Immunol. 19, 83–91. https://doi.
to exercise broad control over the life cycle of a double-stranded RNA org/10.1089/vim.2006.19.83.
virus. EMBO J. 19, 114–123. https://doi.org/10.1093/emboj/19.1.114. Fernández-Arias, A., Martínez, S., and Rodríguez, J.F. (1997). The major
Boot, H.J., ter Huurne, A.A., Hoekman, A.J., Pol, J.M., Gielkens, A.L., and antigenic protein of infectious bursal disease virus, VP2, is an apoptotic
Peeters, B.P. (2002). Exchange of the C-terminal part of VP3 from very inducer. J. Virol. 71, 8014–8018.
virulent infectious bursal disease virus results in an attenuated virus with Ferrero, D., Garriga, D., Navarro, A., Rodríguez, J.F., and Verdaguer, N.
a unique antigenic structure. J. Virol. 76, 10346–10355. (2015). Infectious bursal disease virus VP3 upregulates VP1-mediated
Busnadiego, I., Maestre, A.M., Rodríguez, D., and Rodríguez, J.F. (2012). RNA-dependent RNA replication. J. Virol. 89, 11165–11168. https://
The infectious bursal disease virus RNA-binding VP3 polypeptide doi.org/10.1128/JVI.00218-15.
inhibits PKR-mediated apoptosis. PLOS ONE 7, e46768. https://doi. Francois, A., Chevalier, C., Delmas, B., Eterradossi, N., Toquin, D., Rivallan,
org/10.1371/journal.pone.0046768. G., and Langlois, P. (2004). Avian adenovirus CELO recombinants
Butter, C., Sturman, T.D., Baaten, B.J., and Davison, T.F. (2003). expressing VP2 of infectious bursal disease virus induce protection
Protection from infectious bursal disease virus (IBDV)-induced against bursal disease in chickens. Vaccine 22, 2351–2360. https://doi.
immunosuppression by immunization with a fowlpox recombinant org/10.1016/j.vaccine.2003.10.039.
containing IBDV-VP2. Avian Pathol. 32, 597–604. https://doi.org/10. Fu, M., Wang, B., Chen, X., He, Z., Wang, Y., Li, X., Cao, H., and Zheng,
1080/03079450310001610686. S.J. (2018a). MicroRNA gga-miR-130b suppresses infectious bursal
disease virus replication via targeting of the viral genome and cellular
suppressors of cytokine signaling 5. J. Virol. 92, e01646–17.