Page 231 - Avian Virology: Current Research and Future Trends
P. 231

224  |  Zheng

          in IBDV–host interaction and roles of miRNA in host response   Chen,  D., Li,  Z.,  Yang,  Q., Zhang,  J.,  Zhai,  Z., and  Shu,  H.B.  (2003).
                                                                   Identification of a nuclear protein that promotes NF-kappaB activation.
          to IBDV shed light on development of novel vaccines that are   Biochem. Biophys. Res. Commun. 310, 720–724.
          expected to maintain antigenicity of IBDV without damages to   Chen, Y., Lu, Z., Zhang, L., Gao, L., Wang, N., Gao, X., Wang, Y., Li, K., Gao,
          BF. There are still some mysteries in the pathogenesis of IBDV   Y., Cui, H., et al. (2016). Ribosomal protein L4 interacts with viral protein
          infection that need to be deciphered, including the mechanisms   VP3 and regulates the replication of infectious bursal disease virus. Virus
                                                                   Res. 211, 73–78. https://doi.org/10.1016/j.virusres.2015.09.017.
          of IBDV replication in host cell, the roles of viral components in   Clayton, S.A., Jones, S.W., Kurowska-Stolarska, M., and Clark, A.R. (2018).
          host response and the underlying mechanisms, and the initiation   The  role  of  microRNAs  in  glucocorticoid  action.  J.  Biol.  Chem.  293,
          of  cellular  miRNA  response  to  IBDV  infection.  The  more  we   1865–1874. https://doi.org/10.1074/jbc.R117.000366.
          know about the pathogenesis of IBDV infection, the closer we are   Conner, S.D., and Schmid, S.L. (2003). Regulated portals of entry into the
                                                                   cell. Nature 422, 37–44. https://doi.org/10.1038/nature01451.
          to success in development of optimal vaccines via manipulation   Cubas-Gaona, L.L., Diaz-Beneitez, E., Ciscar, M., Rodríguez, J.F., and
          of reverse genetic system or other modern techniques.    Rodríguez,  D.  (2018).  Exacerbated  apoptosis  of  cells  infected  with
                                                                   infectious bursal disease virus upon exposure to interferon alpha. J. Virol.
                                                                   92, e00364–18.
          Acknowledgements                                      Cui, D., Zhang, J., Zuo, Y., Huo, S., Zhang, Y., Wang, L., Li, X., and Zhong,
          This work was supported by grants from the National Natural   F. (2018). Recombinant chicken interleukin-7 as a potent adjuvant
          Science Foundation of China (#31430085 and Earmarked     increases the immunogenicity and protection of inactivated infectious
          Fund for Modern Agro-industry Technology Research System   bursal disease vaccine. Vet. Res.  49, 10. https://doi.org/10.1186/
          (#NYCYTX-41).                                            s13567-017-0497-3.
                                                                Cuperus, T., Coorens, M., van Dijk, A., and Haagsman, H.P. (2013). Avian
                                                                   host defense peptides. Dev. Comp. Immunol. 41, 352–369.
          References                                            Darteil, R., Bublot, M., Laplace, E., Bouquet, J.F., Audonnet, J.C., and Rivière,
          Aricibasi, M., Jung, A., Heller, E.D., and Rautenschlein, S. (2010).   M. (1995). Herpesvirus of turkey recombinant viruses expressing
            Differences in genetic background influence the induction of innate and   infectious bursal disease virus (IBDV) VP2 immunogen induce
            acquired immune responses in chickens depending on the virulence   protection against an IBDV virulent challenge in chickens. Virology 211,
            of the infecting infectious bursal disease virus (IBDV) strain. Vet.   481–490.
            Immunol.  Immunopathol.  135,  79–92.  https://doi.org/10.1016/j.  Delgui, L., Oña, A., Gutiérrez, S., Luque, D., Navarro, A., Castón, J.R., and
            vetimm.2009.11.005.                                    Rodríguez, J.F. (2009). The capsid protein of infectious bursal disease
          Arnold, M., Durairaj, V., Mundt, E., Schulze, K., Breunig, K.D., and Behrens,   virus contains a functional alpha 4 beta 1 integrin ligand motif. Virology
            S.E. (2012). Protective vaccination against infectious bursal disease virus   386, 360–372. https://doi.org/10.1016/j.virol.2008.12.036.
            with whole recombinant Kluyveromyces lactis yeast expressing the viral   Dey, S., Chellappa, M.M., Pathak, D.C., Gaikwad, S., Yadav, K.,
            VP2 subunit. PLOS ONE 7, e42870. https://doi.org/10.1371/journal.  Ramakrishnan, S., and Vakharia, V.N. (2017). Newcastle Disease Virus
            pone.0042870.                                          Vectored Bivalent Vaccine against Virulent Infectious Bursal Disease and
          Ayroldi, E., and Riccardi, C. (2009). Glucocorticoid-induced leucine zipper   Newcastle Disease of Chickens. Vaccines 5, E31.
            (GILZ): a new important mediator of glucocorticoid action. FASEB J.   Di, Marco, B., Massetti, M., Bruscoli, S., Macchiarulo, A., Di Virgilio,
            23, 3649–3658. https://doi.org/10.1096/fj.09-134684.   R., Velardi, E., Donato, V., Migliorati, G., and Riccardi, C. (2007).
          Azad, A.A., Barrett, S.A., and Fahey, K.J. (1985). The characterization and   Glucocorticoid-induced leucine zipper (GILZ)/NF-kappaB interaction:
            molecular cloning of the double-stranded RNA genome of an Australian   role of GILZ homo-dimerization and C-terminal domain. Nucleic Acids
            strain of infectious bursal disease virus. Virology 143, 35–44.  Res. 35, 517–528.
          Banda, A., and Villegas, P. (2004). Genetic characterization of very virulent   Dobos, P., Hill, B.J., Hallett, R., Kells, D.T., Becht, H., and Teninges, D.
            infectious bursal disease viruses from Latin America. Avian Dis.  48,   (1979). Biophysical and biochemical characterization of five animal
            540–549. https://doi.org/10.1637/7157-12304R.          viruses with bisegmented double-stranded RNA genomes. J. Virol. 32,
          Bayliss, C.D., Peters, R.W., Cook, J.K., Reece, R.L., Howes, K., Binns, M.M.,   593–605.
            and Boursnell, M.E. (1991). A recombinant fowlpox virus that expresses   Dulwich, K.L., Giotis, E.S., Gray, A., Nair, V., Skinner, M.A., and Broadbent,
            the VP2 antigen of infectious bursal disease virus induces protection   A.J. (2017). Differential gene expression in chicken primary B cells
            against mortality caused by the virus. Arch. Virol. 120, 193–205.  infected ex vivo with attenuated and very virulent strains of infectious
          Behring,  E.V. (1967). 1901-Biographical: Nobel Lectures, Physiology or   bursal disease virus (IBDV). J. Gen. Virol. 98, 2918–2930. https://doi.
            Medicine 1901–1921 (Elsevier Publishing Company, Amsterdam).   org/10.1099/jgv.0.000979.
            Available online: http://www.nobelprize.org/nobel_prizes/ medicine/  Eldaghayes, I., Rothwell, L., Williams, A., Withers, D., Balu, S., Davison, F.,
            laureates/1901/ behring-bio.html. Accessed 9 September 2014.   and Kaiser, P. (2006). Infectious bursal disease virus: strains that differ
          Birghan, C., Mundt, E., and Gorbalenya, A.E. (2000). A non-canonical lon   in virulence differentially modulate the innate immune response to
            proteinase lacking the ATPase domain employs the ser-Lys catalytic dyad   infection in the chicken bursa. Viral Immunol. 19, 83–91. https://doi.
            to exercise broad control over the life cycle of a double-stranded RNA   org/10.1089/vim.2006.19.83.
            virus. EMBO J. 19, 114–123. https://doi.org/10.1093/emboj/19.1.114.  Fernández-Arias, A., Martínez, S., and Rodríguez, J.F. (1997). The major
          Boot, H.J., ter Huurne, A.A., Hoekman, A.J., Pol, J.M., Gielkens, A.L., and   antigenic protein of infectious bursal disease virus, VP2, is an apoptotic
            Peeters, B.P. (2002). Exchange of the C-terminal part of VP3 from very   inducer. J. Virol. 71, 8014–8018.
            virulent infectious bursal disease virus results in an attenuated virus with   Ferrero, D., Garriga, D., Navarro, A., Rodríguez, J.F., and Verdaguer, N.
            a unique antigenic structure. J. Virol. 76, 10346–10355.  (2015). Infectious bursal disease virus VP3 upregulates VP1-mediated
          Busnadiego, I., Maestre, A.M., Rodríguez, D., and Rodríguez, J.F. (2012).   RNA-dependent RNA replication. J. Virol. 89, 11165–11168. https://
            The infectious bursal disease virus RNA-binding VP3 polypeptide   doi.org/10.1128/JVI.00218-15.
            inhibits PKR-mediated apoptosis. PLOS ONE 7, e46768. https://doi.  Francois, A., Chevalier, C., Delmas, B., Eterradossi, N., Toquin, D., Rivallan,
            org/10.1371/journal.pone.0046768.                      G.,  and  Langlois,  P.  (2004).  Avian  adenovirus  CELO  recombinants
          Butter, C., Sturman, T.D., Baaten, B.J., and Davison, T.F. (2003).   expressing VP2 of infectious bursal disease virus induce protection
            Protection from infectious bursal disease virus (IBDV)-induced   against bursal disease in chickens. Vaccine 22, 2351–2360. https://doi.
            immunosuppression  by  immunization  with  a  fowlpox  recombinant   org/10.1016/j.vaccine.2003.10.039.
            containing IBDV-VP2. Avian Pathol. 32, 597–604. https://doi.org/10.  Fu, M., Wang, B., Chen, X., He, Z., Wang, Y., Li, X., Cao, H., and Zheng,
            1080/03079450310001610686.                             S.J.  (2018a).  MicroRNA  gga-miR-130b  suppresses  infectious  bursal
                                                                   disease virus replication via targeting of the viral genome and cellular
                                                                   suppressors of cytokine signaling 5. J. Virol. 92, e01646–17.
   226   227   228   229   230   231   232   233   234   235   236