Page 299 - Avian Virology: Current Research and Future Trends
P. 299

290  |  Corredor and Nagy

                                                    XCXC        BC3
                             HAdV-5              L--HCHCSSPGSLQCIAGGQVLASWFRMVVDGAM--------
                             HAdV-9              L--HCHCSSPGSLQCRAGGTLLAVWFRRVIYGCM--------
                             HAdV-12             I--HCHCQRPGSLQCMSAGMLLGRWFKMAVYGAL--------
                             FAdV-4_ORF14B       LYSHCRCKDPYSLFCRALNQYVAQQWRLDVREHL--------
                             FAdV-10_ORF14B      LYSHCRCKDPYSLFCRALNQYVAQQWRLDVREHLASVPIRHP
                             PiAdV-1_ORF14A      VSYRCSCPSPHSLFCWSLAHYAVQYWINDVLEYL--------
                             FAdV-4_ORF14A       LKYRCTCPKPHSLFCHSLRMKTYIRWVDEIRATT--------
                             FAdV-10_ORF14A      LKYKCTCPKPHSLFCHSIRMKAYTRWVDEIRATT--------
                             DAdV-2_ORF14        VLYSCKCHDKLSLQCMSRVHVLTAMWMDCIHAYL--------
                             TAdV-1_ORF14        VLYYCACRDPRSLQCLALAHVFTQYWRDCIVRYV--------
                             TAdV-1_ORF24        CIYECTCHRPRSLQCSAMASVVIQHWHAEIRRYL--------
                             FAdV-4_ORF14        VKLRCNCGDGNSLFCQSLRELLFHSWKEAIQNGV--------
                             FAdV-10_ORF14       VKLRCNCGDGNSLFCQSLRELLFHSWKEAIQNGV--------
                             FAdV-4_ORF24        IRSECSCRMPHSLFCESLGQLVFTYWFETIQEFI--------
                             FAdV-10_ORF24       IRSECSCGMPHSLFCESLGQLVFAYWFETIQEFI--------
                             FAdV-1_ORF14        IQYICSCETPRSLFCLSLIRVLTAHWAKTVVNFV--------
                             TAdV-5_ORF14        ITYCCQCDNPKSLFCQSLMHVLFRHWSRLIVDFV--------
                             FAdV-2_ORF14        ASYVCECEEPLSLFCQSLAVTLTMEWHAKLTAYPIAENPFP-
                             FAdV-9_ORF14        ASYVCECEEPLSLFCQSLAATLTMEWHAKLTAYP--------
                             FAdV-5_ORF14        AEYSCQCPEPLSLFCQSLASLLATQWYQRLLKNP--------
                             TAdV-4_ORF14        VSYSCNCDEPMSLFCQSLVAVLTQKWFDDLQSQS--------
                             FAdV-2_ORF24        IRYDCTCTNPYSLMCQAASKVVCTYWLDKVYEYF--------
                             FAdV-9_ORF24        IRYDCTCTNPYSLMCQAASKVVCTYWLDKVYEYF--------
                             TAdV-8_ORF24        VRYDCTCLNPFSLMCQSASKVICTYWLDQVQEYF--------
                             TAdV-4_ORF14A       IRYDCNCSKPYSLMCQSTSKVVCTYWLDQVQSYF--------
                             FAdV-5_ORF14A       VRYDCNCDKPHSLMCQSTCKVVVAYWLETVQEYF--------
                             GoAdV-4_ORF14       LAYACNCSNPLSLMCMSRLHVIVKRWTEMLKTVV--------
                             PiAdV-1_ORF14       IQVVCDCQQPGSVLCECILTLALERWAVRLLRAV--------

                             Figure 2. Human adenovirus E4ORF6-like sequence found in
          Figure 10.2  Human adenovirus E4ORF6-like sequence found in aviadenoviruses. Amended from Gilson T, Blanchette P, Ballmann M Z,
                             aviadenoviruses. From Gilson T, Blanchette P, Ballmann M Z, Papp
          Papp T, Pénzes J J, Benko M, Harrach B, Branton P E. (2016) J. Virol. 90: 7350–7367, with permission from the American Society for
          Microbiology.      T, Pénzes J J, Benko M, Harrach B, Branton P E. J. Virol. 90:
                             7350-7367, with modifications.


            FAdV-1 Gam-1 or mastadenovirus E1A 19 K are functionally   polymerase and pTP form a heterodimeric complex that binds
          equivalent to Bcl2 protein in terms of inhibition of Bak- and Bax-  to domain A of the origin of replication in both parental DNA
          mediated apoptosis preventing the formation of Bak-Bax pores of   strands. Cellular proteins NF1 and OCT1 physically interact
          the outer mitochondrial membranes and release of cytochrome   with the viral DNA polymerase and pTP, respectively. Bind-
          c and Smac/DIABLO (Chiocca et al., 1997; Berk, 2013). Both   ing of NF1 to the viral DNA polymerase is stimulated by the
          E1B 19 K and Gam-1 also inhibit TNF-α signalling (Chiocca et   viral DBP. These protein complexes bound to the origin of
          al., 1997).                                           replication in the viral genome gives rise to the preinitiation
            E2 genes encode proteins for viral DNA replication including   complex. The priming reaction takes place by the formation
          the DNA polymerase, double-stranded DNA-binding protein   of the pTP-deoxycytidine monophosphate (dCMP) complex
          (DBP) and pre-terminal protein (pTP) (Berk, 2013). The acti-  that is catalysed by the viral DNA polymerase. The pTP-dCMP
          vation of E2 genes in avian adenoviruses is not well understood,   primes the synthesis of the nascent DNA daughter strand by the
          while their activation in mastadenoviruses is mediated by E1A   viral DNA polymerase. The elongation of the daughter strand
          and E4ORF6/7 proteins (Swaminathan and Thimmapaya,    involves separation of the viral DNA polymerase from pTP,
          1996). FAdV-1 Gam-1 and ORF22 protein, which are function-  which remains covalently attached to the 5′ end of both termini.
          ally equivalent to mastadenovirus E1A proteins, probably activate   The elongation of the daughter strand requires DBP to unwind
          E2 genes.                                             the viral genome during synthesis.
            In general, replication of the viral DNA in mastadenoviruses   Transcription of L genes from the major late promoter (MLP)
          begins at 6 hours post infection (hpi) (Berk, 2013) or 12 hpi   is significantly increased after DNA replication. Such genes are
          in aviadenoviruses (Alexander et al., 1998). The inverted ter-  grouped into five families (L1–L5) in mastadenoviruses or six
          minal repeats at both termini are the origin of replication of   families (L1–L6) in aviadenoviruses (Payet et al., 1998; Ojkic et
          the viral genome. Replication of the viral DNA takes place in   al., 2002). During the early stage of infection, the transcription
          two stages (Fig. 10.3). First, one of the DNA strands serves   of only the L1 mRNA encoding the 52/55 K protein takes place.
          as template for the synthesis of the daughter strand while the   After DNA replication, transcription from the MLP is processed
          other strand is displaced. Second, the displaced single-stranded   by differential utilization of poly A and splicing sites to give rise to
          parental strand forms a ‘panhandle’ structure through annealing   at least 14 distinct mRNAs. Splicing takes place from an untrans-
          of the self-complementary termini.  This structure  is disrupted   lated leader, which can be either tripartite in mastadenoviruses
          as the synthesis of the daughter strand begins. The viral DNA   and atadenoviruses or bipartite in aviadenoviruses (Fig. 10.4)
   294   295   296   297   298   299   300   301   302   303   304