Page 41 - Math SL HB Sem 1
P. 41
i
BNON,{I.{L THEORE\,I
EXERCISE
1 . Find the r, alue of
a) 8r b) (11 )( 7l ) c) - 0! d) 6r -r!
7\
8! ^ 14!
e) l) 41 8!
6t
- I0l1: c) 6!
-
\\-ithout using the calcuiator, solve the follou,ing
ln-1J
a) (;) r) r':l c)
\r./ [, - *,t
.. (n+2) | . (n+2\
O)- t n l) t nl ! 0 (n+1)(n+2) |
'
-
(rt3) I
write out the foliowing binomiar expansion for ascending powers of x until the third
term:
a) (l+2x;ro b) (3-2x)a
.) (1-*)" d) (2x+3)j
-r
I
e) (1 - -x )'
2
I Find the tetm that is independent ofx in the expansion of:
l
a) Ilx_ __l 115 b) (*-a)'o
lx' x'
5. Find the indicated term in the expansion
a)( t+ )12, eigth term d) (3x - 2)e , third term
b) ( 4
-?),n,fourrhrerm
-
qp | ( ax by )j , fifth terrn
c) ( y2 + {;'o , t'fth t".-
6 \L'ritethe(r+ 1)th term in rhe expansion of ( , lx )e as a series ofascendin,q
x
I
pou,ers of (-2r). Hence, find rhe term in r and term rhat is ir.rclependent ol r.
a
7 Erpand (3 +x)4-( i r ) in ascendine pou.ers ofr.
,