Page 90 - Math SL HB Sem 1
P. 90

CIRCULAR  FUNCTIONS AND TRIGONOMETRY







                     DEFINITION OF TRIGONOME'IRIC  RATIOS  IN TERMS  OF THE UNIT
                     CICLE




                 Let the point P (x,y) be a point  on the circumference ofthe unit circle,
                 x'+ y'= I with the centre of the origin (0,0) and radius I unit
                                             vl

                                                      J)
                                                   v
                                                .!M



                         MP
                sln a =  __     v                              figure 7
                         OP



                    -MO
                cos A:
                         OP




                In the first quadrant  we extend  Op to mee t the
                tangent at A( I  ,0)  so that it meets this tangent at
                                                               e.
                Q's  position  relative to A is defined  as the tangent
                function
                AQ  NP                        AQ sind
                                  l.c
                OA ON                          I    cos d
                           v
                                      Q(1,  tan 0)


                                        lznO
                                 sin0
                                   I
                                            I
                                   N       0)
                            cos0



                                               figure  8
                                    tind
               Therefore, tro d =
                                    cos d










                                                       +-o
   85   86   87   88   89   90   91   92   93   94   95