Page 64 - Math SL HB Sem 1
P. 64

\,i.4TIIEl\lATICS  Standard  LeYel





















                                                                        }
                             d/  = l-{o,  con{0}    (b)  ds  = l  -*, *t\{'-l  (c)  di  = 1---@,  ot\i  I  )
                                                                                   v


                                                                                        I
                                                                I
                                                                                        I
                                                                I
                                   I
                                                                i                       T-
                                                                     (0,1)
                                                                I
                                                               -t

                         Asymp(otes:  vcnical,r   =  0  Asymptoles:  ledcal.r  = -I
                                 horizontal,,  =  I          honzontai.)  =  0









                                            :.
                        a)   The emect  of the  '2'  in the  ?  term is to stretch  the graPh  of ), =  I  along the  )'-axis  by a

                             factorof2.The'-ve'infrontofthe?termwillreflectthethegraphof)=?aboutrhe
                                                           L'I

                             r'-axis. Adding  '2'to  the gmPh of :' = -?  \xill move  tbe graph up'2'units'
                                                               -I
                             The domain  of this funcrion is giYen  by l-!'. -[  {0}  and it has two asymptotes.  The
                                                                     \
                             venical  asymptote  is at.,t.'  =  O and the horizontal  asymptote is at  -r'=  2



                                                                 To find the x-intercept,  set  =  0:
                                                                                       -v
                                                                                          ?.'-.   t
                                                                  -xir
                                                                               =
                                         )                        t --  o o2-2-  o<:,2  =       =
                                                       l
                                                    lr






                                                     3- t7
   59   60   61   62   63   64   65   66   67   68   69