Page 90 - Math SL HB Sem 1
P. 90
CIRCULAR FUNCTIONS AND TRIGONOMETRY
DEFINITION OF TRIGONOMETRIC RATIOS IN TERMS OF THE UNIT
CICLE
Let the point P (x,y) be a point on the circumference of the unit circle,
x" + y'= I with the centre of the origin (0,0) and radius I unit
vl
P(x J)
v
-rM
MP
sln 6r: __ v figure 7
OP
cos A: MO
OP
In the first quadrant we extend Op to rneet the
tangent at A(1,0) so that it meets this tangent at e.
Q's position rclative to A is defined as the tangent
function
AQ NP AQ sind
l.e
OA ON I cos d
v
Q(1,lan0)
tan0
sin0
N A( r, 0)
cosd
figurc 8
Therefore, 1r,r9= i'n{
+-o