Page 90 - Math SL HB Sem 1
P. 90

CIRCULAR  FUNCTIONS AND TRIGONOMETRY







                     DEFINITION  OF TRIGONOMETRIC  RATIOS IN TERMS OF THE UNIT
                     CICLE



                 Let the point  P (x,y) be a point on the circumference  of the unit circle,
                 x" + y'= I with the centre of the origin (0,0) and radius I unit
                                             vl

                                                   P(x  J)
                                                   v
                                                -rM



                         MP
                sln 6r:  __     v                              figure  7
                         OP




                cos A:   MO
                         OP




                In the first quadrant  we extend Op to rneet the
               tangent at A(1,0) so that it meets this tangent at e.
               Q's  position  rclative  to A is defined  as the tangent
               function
                AQ  NP                        AQ sind
                                  l.e
                OA ON                          I    cos d
                           v
                                      Q(1,lan0)


                                        tan0
                                 sin0


                                   N  A( r, 0)
                            cosd



                                               figurc 8
               Therefore,  1r,r9=  i'n{












                                                       +-o
   85   86   87   88   89   90   91   92   93   94   95