Page 12 - Math SL HB Sem 2
P. 12

b) Defilative  of e constant

                                 If y:  *"o rt  =0,cisaconstant
                                      "
                               c) Derivative  of a coustant  times  a function

                                 If y:  c u(x)  then  Y'  :  "  u'1,,


                               d) Derivative  of ciicular  trigonometric  functions


                                 Ifv = sin x  theny' =cosx
                                 tf v: cos x  then Y'  = -sln ;
                                 Ify = tan x   then  Y'  = t".' *


                                 f) Derrvatives of elponential  functions


                                 If  Y=  e'  15sn  Yr  =  qx
                                 g) Derivatives of logarithmic  functions
                                          --rl
                                 IfY=1n* $ea, =;



                                h) Derivative  of a sum or dilference

                                                        :f(x) + g'(x)
                                li y =  f(x)  + g(x1 then  Yt

                                i) Dciivative  of a product  of futrctions
                                i;-:j;)xc@        then vr=f(4's6)       +  f(x)xs'6)


                                j) Derivative  of a quotient of functions
                                       f{-r)      t                    x
                                 If v=  i++ meny = /G)     x  s@ -f(x)  s'G)
                                   '
                                       c(r)
                                                             [e(,X


                              k) Derivative  of Composite  functious
                              All functions that can be made up by composing  a fimction of a function  are called
                              comoosite  functions.
                              For example iffk)  :  xa and g(x) = xz + 3x then

                                            fG6):"fd+jx1      :(l+3x)4


                              Now considery  =  pc+  1)3 which is really y = u3 where u-2x+ I
                              Exoandinewehavev:     (2x + I)r
                                                '  :  (2x)t + 3S2x)21  + 3Qx)12  + ti       expansiorf
                                                  :81 + l2l + 6x+ I              frbinomial

                                             ..0   =z4rr+   24r+ 6
                                                &
                                                  :  614a2  + 4x + l)

                                                  = 6Qx _ 1)2
                                                   :Jey+l)2x2

                                                   = 3u2 x \whichis    ogoin!!-
                                                            &                clu &
   7   8   9   10   11   12   13   14   15   16   17