Page 39 - Math SL HB Sem 2
P. 39

INTEGRATION


                   INDEFINITE  INTEGRALS

                   Defurition : Anti derivative  of a Function
                          A firnction  F(x) is called an anti derivative  of a function  f(x) if and only if the
                          derivative ofF(x) is f(x).
                          i.e.           l.t*l  = r(*l         I  or F,(x): t(x)  l
                                         dx"
                          for all x in the domain of f(x).


                                  d   x'.
                   IOr exarnple: -.  (      x
                                       2'
                                  ox  -)
                                  d  .x'
                                     (-  +3)  x
                                     '2
                                             =
                                  dx
                                  d
                                     ,*-',=*
                                  dx
                          .d         (F(x)+c)=f(x)
                                 dx


                  A function x, f (x)  has more  than one anti derivatives  F(x)  + q.
                                     ,
                                                                        ,
                  The process  of finding  (F(x) + c) from f(x) or finding anti derivative of f(x): INTEGRATION
                                  Jf(x)dx=F(x)+c



                  Example I : Show that F(x) is the anti derivative  of f(x) if
                   a) F(x):( x+4)3 +c and f(x) = 3x2 +24x+48
   34   35   36   37   38   39   40   41   42   43   44