Page 6 - Math SL HB Sem 2
P. 6

From  a geometric point of view:




                                                     As B moves towards A,
                                                     the slope ofAB  -+ the slope ofthe tangent  at A    (2)

                                                     Thus, from (l) and  (2), we conclude that  as both
                                                     limits  must b€ the samq the slope of the tangent
                                                     atAis2



                               A         tangent  at A


                    LIIVIIT RTJLES
                        l)  limc  =  c   c is a constant
                           x-+a
                        2) limc x u(x)  s x limu(r),u(r)  is a function ofx
                                       =
                           x-+a                x-+ a
                        3) lim[z(x) + v(r)]  =  tim z(:) + lim v(:r)
                           x-+a                x-+ a
                           u(x) and v(x) arc function ofx
                        a) um[a(.r)v(r)]  = [im,.(r, [tim,1r)]
                                           x--> a    x-'+ a
                           u(x) and v(x) are functions ofr.


                     Limits involving  (sin 0) / 0




                                                , =  _;_  Irrdra r,

                           t   -Z
   1   2   3   4   5   6   7   8   9   10   11