Page 133 - Data Science Algorithms in a Week
P. 133

Texture Descriptors for The Generic Pattern Classification Problem   117

                       sorting  the  features  of  the  original  pattern  before  the  matrix  generation  process.  This
                       simple method also resulted in improved performance.
                          In  the  future  we  plan  on  studying  the  potential  of  improving  performance  of  the
                       proposed approach by fusing the different texture descriptors.


                                                       REFERENCES

                       Beymer,  D.,  &  Poggio,  T.  (1996).  Image  representations  for  visual  learning.  Science,
                          272(5270), 1905-1909.
                       Chan,  C.,  Tahir,  M.,  Kittler,  J.,  &  Pietikainen,  M.  (2013).  Multiscale  local  phase
                          quantisation  for  robust  component-based  face  recognition  using  kernel  fusion  of
                          multiple  descriptors.  IEEE  Transactions  on  Pattern  Analysis  and  Machine
                          Intelligence, 35(5), 1164-1177.
                       Chen, S., Wang, Z., & Tian, Y. (2007). Matrix-pattern-oriented ho-kashyap classifierwith
                          regularization learning. Pattern Recognition, 40(5), :1533–1543.
                       Chen, S. C., Zhu, Y. L., Zhang, D. Q., & Yang, J. (2005). Feature extraction approaches
                          based on matrix pattern: MatPCA and MatFLDA. Pattern Recognition Letters, 26,
                          1157-1167.
                       Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection.
                          Paper  presented  at  the  9th  European  Conference  on  Computer  Vision,  San  Diego,
                          CA.
                       Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
                          of Machine Learning Research, 7 1-30.
                       Eustice,  R.,  Pizarro,  O.,  Singh,  H.,  &  Howland,  J.  (2002).  UWIT:  Underwater  image
                          toolbox for optical image processing and mosaicking in MATLAB. Paper presented at
                          the International Symposium on Underwater Technology, Tokyo, Japan.
                       Felzenszwalb, P., & McAuley, J. (2011). Fast inference with min-sum matrix product.
                          IEEE  Transactions  on  Pattern  Analysis  and  Machine  Intelligence,  33(12),  2549-
                          2554.
                       Guo, Z., Zhang, L., & Zhang, D. (2010). A completed modeling of local binary pattern
                          operator for texture classification. IEEE Transactions on Image Processing, 19(6),
                          1657-1663 doi: 10.1109/TIP.2010.2044957
                       Jantzen, J., Norup, J., Dounias, G., & Bjerregaard, B. (2005). Pap-smear benchmark data
                          for pattern classification. Paper presented at the Nature inspired Smart Information
                          Systems (NiSIS), Albufeira, Portugal.
                       Junior, G. B., Cardoso de Paiva, A., Silva, A. C., & Muniz de Oliveira, A. C. (2009).
                          Classification of breast tissues using Moran's index and Geary's coefficient as texture
                          signatures and SVM. Computers in Biology and Medicine, 39(12), 1063-1072.
   128   129   130   131   132   133   134   135   136   137   138