Page 87 - Data Science Algorithms in a Week
P. 87

Machine Learning Applied to Autonomous Vehicles              71

                          the  control system of  an  autonomous  vehicle].  PhD  thesis,  UNICAMP,  Campinas,
                          SP, Brasil.
                       Camastra, F. & Vinciarelli, A. (2007).  Machine Learning for Audio, Image and Video
                          Analysis:  Theory  and  Applications  (Advanced  Information  and  Knowledge
                          Processing). 2nd edition.
                       Carbonell,  J.  (2015).  Machine  Learning.  Learning  by  Analogy:  Formulating  and
                          Generalizing plans from past experience. Symbolic Computation. Springer.
                       Chen, Y.-L., Sundareswaran, V., Anderson, C., Broggi, A., Grisleri, P., Porta, P. P., Zani,
                          P.,  &  Beck,  J.  (2008).  Terramax:  Team  Oshkosh  urban  robot.  Journal  of  Field
                          Robotics, 25(10), 841–860.
                       Cullinane, B., Nemec, P., Clement, M., Mariet, R., & Jonsson, L. (2014). Engaging and
                          disengaging for autonomous driving. US Patent App. 14/095, 226.
                       Fukushima,  K.  (1980).  Neocognitron:  A  self-organizing  neural  network  model  for  a
                          mechanism  of  pattern  recognition  unaffected  by  shift  in  position.  Biological
                          Cybernetics, 36(4), 193–202.
                       He,  K.,  Zhang,  X.,  Ren,  S.,  &  Sun,  J.  (2016).  Deep  residual  learning  for  image
                          recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
                          Recognition, 770–778.
                       Heaton,  J.  (2013).  Artificial  Intelligence  for  Humans,  Volume  1:  Fundamental
                          Algorithms. CreateSpace Independent Publishing Platform.
                       Heaton,  J.  (2015).  Artificial  Intelligence  for  Humans:  Deep  learning  and  neural
                          networks. Artificial Intelligence for Humans. Heaton Research, Incorporated.
                       Hinton, G. E., Sejnowski, T. J., & Ackley, D. H. (1984). Boltzmann machines: Constraint
                          satisfaction  networks  that  learn.  Carnegie-Mellon  University,  Department  of
                          Computer Science Pittsburgh, PA.
                       Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
                          computational  abilities.  Proceedings  of  the  national  academy  of  sciences,  79(8),
                          2554– 2558.
                       Jain, A., Koppula, H. S., Raghavan, B., Soh, S., & Saxena, A. (2015). Car that knows
                          before you do: Anticipating maneuvers via learning temporal driving models. In 2015
                          IEEE International Conference on Computer Vision (ICCV), 3182–3190.
                       Kahn, A. B. (1962). Topological sorting of large networks. Communications of the ACM,
                          5(11), 558–562.
                       Kaplan,  S.,  Guvensan,  M.  A.,  Yavuz,  A.  G.,  &  Karalurt,  Y.  (2015).  Driver  behavior
                          analysis for safe driving: A survey. IEEE Transactions on Intelligent Transportation
                          Systems, 16(6), 3017–3032.
                       Kingma, D. & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
                          arXiv:1412.6980.
                       Kohavi, R. & Provost, F. (1998). Glossary of terms. Mach. Learn., 30(2-3), 271–274.
                       Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1), 1–6.
   82   83   84   85   86   87   88   89   90   91   92