Page 15 - modul trigonometri_Neat
P. 15

Example 1.2


                                                                 1
                        Given the right triangle ABC, sin A =   . Specify cos A and tan A
                                                                 3


                           Alternative Solutions

                                        1                1
                        Known sin A =   , that is      = . More precisely, the side length (BC) in
                                        3                3
                        front of angle A and the length of the sloped side (AC) of the ABC
                        triangle have a ratio of 1 : 3,

                        View images 1.1.


                        To determine the values cos A and
                        tan A, we need the Length of the AB

                        side.  By  using  the  theorem  of
                        phytagoras, it is obtained:

                                    2
                           2
                                            2
                             =      −     
                                         2
                                                  2
                        ⇒     = √(3  ) − (  )
                                       2
                                             2
                                                       2
                               = √9   −    = √8  
                               = ±2√2                                Gambar 1.1 right triangle ABC

                        So,we  get  the  length  of  the  side       = 2√2  .  (Why  not  −2√2  ?).

                        Here's the solution

                                               2√2     2√2
                             cos    =      =       =
                                                3        3
                                                 k       1    √2    √2    1
                             tan    =      =       =       ×    =      = √2
                                               2√2     2√2    √2     4    4















                                                                                                     11
   10   11   12   13   14   15   16   17   18   19   20