Page 163 - FULL REPORT 30012024
P. 163
Parmar, P., Krishnamurthi, R., Ikram, M. A., Hofman, A., Mirza, S. S., Varakin, Y.,
Kravchenko, M., Piradov, M. A., Thrift, A. G., Norrving, B., Wang, W.,
Mandal, D. K., Barker-Collo, S., Sahathevan, R., Davis, S. M., Saposnik, G.,
Kivipelto, M., Sindi, S., Bornstein, N. M., . . . Feigin, V. L. (2015). The Stroke
Riskometer TM App: Validation of a Data Collection Tool and Stroke Risk
Predictor. International Journal of Stroke, 10(2), 231–244.
https://doi.org/10.1111/ijs.12411
Peters, S. A., Huxley, R. R., & Woodward, M. (2013). Smoking as a Risk Factor for
Stroke in Women Compared With Men. Stroke, 44(10), 2821–2828.
https://doi.org/10.1161/strokeaha.113.002342
Pi, Y. (2021). Machine learning in Governments: Benefits, Challenges and Future
Directions. https://www.semanticscholar.org/paper/Machine-learning-in-
Governments%3A-Benefits%2C-and-
Pi/606cfcdb338c5936c5101c0bff4570b3bfae4a89
Prieto, J. C. S., Migueláñéz, S. O., & García‐Peñalvo, F. J. (2015). Behavioral
intention of use of mobile technologies among pre-service teachers:
Implementation of a technology adoption model based on TAM with the
constructs of compatibility and resistance to change. International Symposium
on Computers in Education. https://doi.org/10.1109/siie.2015.7451660
Punia, S. K., Sharma, M., Stephan, T., Deverajan, G. G., & Patan, R. (2021).
Performance analysis of machine learning algorithms for big data
classification. International Journal of E-health and Medical Communications,
12(4), 60–75. https://doi.org/10.4018/ijehmc.20210701.oa4
Qader, W. A. (2020). Big Data Characteristics, Architecture, Technologies and
Applications. https://www.semanticscholar.org/paper/Big-Data-
Characteristics%2C-Architecture%2C-and-Qader-
Ameen/bfedf11ed3222db6e52893b22926a1d8731f4baa
146