Page 163 - FULL REPORT 30012024
P. 163

Parmar, P., Krishnamurthi, R., Ikram, M. A., Hofman, A., Mirza, S. S., Varakin, Y.,

                               Kravchenko,  M.,  Piradov,  M.  A.,  Thrift,  A.  G.,  Norrving,  B.,  Wang,  W.,

                               Mandal, D. K., Barker-Collo, S., Sahathevan, R., Davis, S. M., Saposnik, G.,
                               Kivipelto, M., Sindi, S., Bornstein, N. M., . . . Feigin, V. L. (2015). The Stroke

                               Riskometer TM   App:  Validation  of  a  Data  Collection  Tool  and  Stroke  Risk
                               Predictor.   International   Journal    of    Stroke,   10(2),    231–244.

                               https://doi.org/10.1111/ijs.12411


                        Peters, S. A., Huxley, R. R., & Woodward, M. (2013). Smoking as a Risk Factor for

                               Stroke  in  Women  Compared  With  Men.  Stroke,  44(10),  2821–2828.
                               https://doi.org/10.1161/strokeaha.113.002342



                        Pi, Y. (2021). Machine learning in Governments: Benefits, Challenges and Future
                               Directions.     https://www.semanticscholar.org/paper/Machine-learning-in-

                               Governments%3A-Benefits%2C-and-
                               Pi/606cfcdb338c5936c5101c0bff4570b3bfae4a89


                        Prieto,  J.  C.  S.,  Migueláñéz,  S.  O.,  &  García‐Peñalvo,  F.  J.  (2015).  Behavioral

                               intention  of  use  of  mobile  technologies  among  pre-service  teachers:

                               Implementation  of  a  technology  adoption  model  based  on  TAM  with  the
                               constructs of compatibility and resistance to change. International Symposium

                               on Computers in Education. https://doi.org/10.1109/siie.2015.7451660


                        Punia,  S.  K.,  Sharma,  M.,  Stephan,  T.,  Deverajan,  G.  G.,  &  Patan,  R.  (2021).

                               Performance  analysis  of  machine  learning  algorithms  for  big  data
                               classification. International Journal of E-health and Medical Communications,

                               12(4), 60–75. https://doi.org/10.4018/ijehmc.20210701.oa4


                        Qader,  W.  A.  (2020).  Big  Data  Characteristics,  Architecture,  Technologies  and

                               Applications.              https://www.semanticscholar.org/paper/Big-Data-
                               Characteristics%2C-Architecture%2C-and-Qader-

                               Ameen/bfedf11ed3222db6e52893b22926a1d8731f4baa


                                                               146
   158   159   160   161   162   163   164   165   166   167   168