Page 160 - FULL REPORT 30012024
P. 160
Ginting, S. L. B., Adler, J., Ginting, Y. R., & Kurniadi, A. H. (2018). The development
of bank applications for debtors’ selection by using Naïve Bayes classifier
technique. IOP Conference Series: Materials Science and Engineering.
https://doi.org/10.1088/1757-899x/407/1/012090
Guzik, A. K., & Bushnell, C. (2017). Stroke Epidemiology and Risk Factor
Management. Continuum, 23(1), 15–39.
https://doi.org/10.1212/con.0000000000000416
Hajjej, F., Alohali, M., Hasan, M., & Rahman, A. (2022). A Comparison of Decision
Tree Algorithms in the Assessment of Biomedical Data. BioMed Research
International, 2022, 1–9. https://doi.org/10.1155/2022/9449497
Jindal, H., Agrawal, S., Khera, R., Jain, R., & Nagrath, P. (2021). Heart disease
prediction using machine learning algorithms. IOP Conference Series:
Materials Science and Engineering, 1022(1), 012072.
https://doi.org/10.1088/1757-899x/1022/1/012072
Johansson, A., Drake, I., Engström, G., & Acosta, S. (2021). Modifiable and Non-
Modifiable Risk Factors for Atherothrombotic Ischemic Stroke among
Subjects in the Malmö Diet and Cancer Study. Nutrients, 13(6), 1952.
https://doi.org/10.3390/nu13061952
Kaur, R., & Kaur, B. (2020). DATA VISUALIZATION TECHNIQUES: A REVIEW.
Global Journal of Engineering Science and Research, 7(8), 18–26.
https://doi.org/10.29121/gjesr.v7.i8.2020.3
Kavitha, C., Mani, V., Srividhya, S. R., Khalaf, O. I., & Romero, C. (2022). Early-
Stage Alzheimer’s Disease Prediction Using Machine Learning Models.
Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.853294
143