Page 128 - Kolaylık Dini İslam
P. 128

KOLAYLIK DİNİ İSLAM


              Bu du rum da, id dia edi len uzun dö nü şüm sü re ci için de sa yı -

            sız "ara tür ler"in oluş muş ve ya şa mış ol ma la rı ge re kir.
              Örneğin geçmişte, balık özelliklerini taşımalarına rağmen, bir
            yandan da bazı sürüngen özellikleri kazanmış olan yarı balık-
            yarı sürüngen canlılar yaşamış olmalıdır. Ya da sürüngen özel-
            liklerini taşırken, bir yandan da bazı kuş özellikleri kazanmış
            sürüngen-kuşlar ortaya çıkmış olmalıdır. Bunlar, bir geçiş süre-
            cinde oldukları için de, sakat, eksik, kusurlu canlılar olmalıdır.

            Evrimciler geçmişte yaşamış olduklarına inandıkları bu hayali
            varlıklara "ara-geçiş formu" adını verirler.
              Eğer gerçekten bu tür canlılar geçmişte yaşamışlarsa bunla-
            rın sayılarının ve çeşitlerinin milyonlarca hatta milyarlarca
            olması gerekir. Ve bu garip canlıların kalıntılarına mutlaka fosil

            kayıtlarında rastlanması gerekir. Darwin,  Türlerin Kökeni'nde
            bunu şöyle açıklamıştır:nu şöy le açık la mış tır:
              Eğer te orim doğ ruy sa, tür le ri bir bi ri ne bağ la yan sa yı sız ara-ge çiş
              çe şit le ri mut la ka ya şa mış ol ma lı dır... Bun la rın ya şa mış ol duk la rı  -
              nın ka nıt la rı da sa de ce fo sil ka lın tı la rı ara sın da bu lu na bi lir. (Char  -

              les Dar win, The Ori gin of Spe ci es: A Fac si mi le of the First Edi ti  -
              on, Har vard Uni ver sity Press, 1964, s. 179)
              Ancak bu satırları yazan Darwin, bu ara formların fosillerinin

            bir türlü bulunamadığının da farkındaydı. Bunun teorisi için
            büyük bir açmaz oluşturduğunu görüyordu. Bu yüzden,
            Türlerin Kökeni kitabının "Teorinin Zorlukları" (Difficulties on
            Theory) adlı bölümünde şöyle yazmıştı:
              Eğer gerçekten türler öbür türlerden yavaş gelişmelerle türemiş-


                                      126
   123   124   125   126   127   128   129   130   131   132   133