Page 307 - Corporate Finance PDF Final new link
P. 307

NPP













                  BRILLIANT’S                         Cost of Capital                               307


                  debt securities, such as its bonds. The cost of  g§^m{dV eo¶ahmoëS>g© àmßV H$aZm MmhVm h¡& S>oãQ> H$s
                  debt  has two  basic components:  one is  the  H$m°ñQ> Ho$ Xmo ‘w»¶ H$ånmoZoÝQ> hmoVo h¢ nhbm dm{f©H$ BÝQ>aoñQ>
                  annual interest and the other arises from the  VWm Xÿgam O~ S>oãQ> nhbr ~ma Bí¶y {H$¶m OmVm h¡ V~
                  amortization of discounts or premium paid or  CgHo$ {S>ñH$mCÝQ> ¶m àr{‘¶‘ Ho$ ^wJVmZ AWdm àmpßV H$s
                  received when the debt is initially issued.  CYma MwH$mB© go CËnÝZ hmoVm h¡&
                      Since,  the  interest  payments  and  the   BÝdoñQ>g© H$s [a³dm¶S>© aoQ> Am°’$ [aQ>Z© ‘| n[adV©Z go
                  return of principal remain constant regardless  à^m{dV hþE {~Zm BÝQ>aoñQ> no‘|Q> VWm qà{gnb na [aQ>Z©
                  of  the change  in  investors  required rate  of  pñWa ahVm h¡, Ho$db ~m°ÊS> àmBO VWm S>oãQ> H$s H$m°ñQ>
                  return, only the bond price and the cost of debt
                  can change. A financial manager can pinpoint  n[ad{V©V hmo gH$Vr h¡& OZabmBO B³doeZ ‘| K H¡$ëHw$boQ>
                                                                                                i
                  the exact cost of debt after the price change by  H$aZo na ’$m¶Zo{e¶b ‘¡ZoOa àmBO ‘| M|Oog Ho$ ~mX S>oãQ>
                  calculating K  in generalized equation:     H$s E³Oo³Q> H$m°ñQ> kmV H$a gH$Vm h¡&
                              i
                                                              I
                                                         K =
                                                          i     NP
                      Where,      I = Interest
                                NP = Net Price (after adjusting, discount and floatation cost)
                      Since, interest is a tax deductible expense,  My§{H$, BÝQ>aoñQ> EH$ Q>¡³g {S>S>³Q>o~b E³gnoÝg h¡,
                  we have to consider the after-tax cost of debt,  AV: h‘§o AmâQ>a Q>¡³g H$m°ñQ> Am°’$ S>oãQ²>g H§$grS>a H$aZm
                  especially if we want to judge its impact on the  hmoJm, {deof ê$n go ¶{X h‘| ’$‘© H$s AmâQ>a Q>¡³g
                  firm's after-tax profitability or compare it to  àm°{’$Q>o{~{bQ>r na BgHo$ à^md H$mo Om§MZm hmo ¶m CZ {d{^ÝZ
                  the cost of  other types of securities  which a  àH$ma H$s {g³¶y[aQ>rO H$s H$m°ñQ> H$mo Bggo H$åno¶a H$aZm
                  company can offer whose cash flows streams  hmo {Ogo dh H$ånZr Am°’$a H$a gH$Vr h¡ {OZH$s H¡$e âbmo
                  are not  deductible, such  as  preference  and  ñQ´>r‘ Q>¡³g {S>S>³Q>o~b Zht hmoVr h¢ O¡go {à’$a|g eo¶g©
                  equity shares.  We can calculate  the after-tax  VWm Bp³dQ>r eo¶g©& Am°âQ>a Q>¡³g H$m°ñQ> Am°’$ S>oãQ> H$mo
                  cost of debt by adjusting the pre-tax cost of  kmV H$aZo Ho$ {bE Q>¡³g aoQ> Ho$ {bE àr-Q>¡³g H$mo Bg
                  debt for the tax rate such that:            àH$ma ES>OñQ> {H$¶m OmVm h¡ {H$:
                                                      K = K  (1 – t)
                                                        d   i
                      Where,    K = the after-tax cost of debt
                                 d
                                 K = the pre-tax cost of debt
                                  i
                                  t = the tax rate.

                   Illustration 4.1.1
                      A company has 15% perpetual debt of ` 1,00,000. The tax rate is 50%. Determine the cost of
                  capital (before tax as well as after tax) assuming the debt is issued at (i) par  (ii) 10% discount and
                  (iii) 10% premium.
                      EH$ H§$nZr H$m ` 1,00,000 H$m 15% nanoMwAb S>oãQ> h¡& Q>¡³g aoQ> 50% h¡& H¡${nQ>b H$s H$m°ñQ> (Q>¡³g Ho$ nhbo
                  VWm Q>¡³g Ho$ níMmV²) H$m {ZYm©aU H$s{OE ‘mZm {H$ S>oãQ> (i) nma (ii) 10% {S>ñH$mC§Q> VWm (iii) 10% [à{‘¶‘ na Omar
                  {H$¶m J¶m h¡&
   302   303   304   305   306   307   308   309   310   311   312