Page 470 - Corporate Finance PDF Final new link
P. 470

NPP













                  470                               Corporate Finance                      BRILLIANT’S


                                                           OR
                         What are the statistical techniques of Risk Analysis? Explain them in brief.
                         [añH$ EZm{b{gg H$s ñQ>o{Q>pñQ>H$b Q>op³Z³g ³¶m h¢? CÝh| g§{jßV ‘| g‘PmB¶o&
                                                           OR
                         Enumerate the limitations faced in practical use of simulation analysis.
                         {g‘wboeZ EZm{b{gg Ho$ ì¶dhm[aH$ Cn¶moJ ‘| AmZo dmbr gr‘mAm| H$m dU©Z H$s{OE&
                  Statistical Techniques of Risk Analy-       [añH$ EZm{b{gg H$s gm§p»`H$s` {d{Y`m±
                  sis
                      The different techniques of risk analysis   [añH$ EZm{b{gg Ho$ {bE {OZ {d{^ÝZ Q>opŠZŠg H$s
                  discussed above are conventional techniques.  MMm© nyd© _| H$s JB© h¢ do g^r naånamJV Q>opŠZŠg h¢Ÿ& do
                  They do not measure and quantify the risk in  [añH$ H$s _mÌm H$m R>rH$-R>rH$ AZw_mZ bJmZo _| ghm`Vm Zht
                  precise  term.  However,  there  are  certain  H$aVo h¢Ÿ& hmbm§{H$ Hw$N> gm§p»`H$s` {d{Y`m± CnbãY h¢ Omo
                  statistical techniques available to measure and  H¡${nQ>b ~OqQ>J {S>grOZ àmogog go Ow‹S>r hþB© [añH$ H$mo _mnVr
                  incorporate risk in a capital budgeting decision
                  process. The important concept used in these  h¡Ÿ& BZ gm§p»`H$s` VH$ZrH$m| Ho$ A§VJ©V EH$ _hËdnyU© H$m°ÝgoßQ>
                  statistical techniques is that of probability.  H$m Cn`moJ {H$`m OmVm h¡ Omo àmo~o{~{bQ>r H$hbmVm h¡Ÿ&
                  Meaning of Probability                      àmo~o{~{bQ>r H$m AW©
                      Probability may  be described  as a  mea-   àmo~o{~{bQ>r go A{^àm` {H$gr KQ>Zm Ho$ hmoZo H$s g§^mdZm
                  sure of the likelihood that an event will occur.  H$mo _mnZm h¡Ÿ& `{X {H$gr KQ>Zm H$m hmoZm gw{ZpíMV h¡ Vmo
                  If an event is certain to occur, we say that its  H$hm Om gH$Vm h¡ {H$ CgH$s àmo~o{~{bQ>r 1 h¡Ÿ& Cgr
                  probability of occurrence is one. If it is certain  àH$ma, `{X `h {ZpíMV h¡ {H$ H$moB© KQ>Zm Zht hmoJr Vmo
                  that  an event  will not  occur, we  say that  its
                                                              H$hm Om gH$Vm h¡ {H$ CgH$s àmo~o{~{bQ>r 0 (eyÝ`) h¡Ÿ&
                  probability of occurrence is zero. Thus, prob-
                  ability of all events to occur lies between zero  Bg àH$ma, g^r KQ>ZmAm| H$s àmo~o{~{bQ>r 0 go 1 Ho$ ~rM _|
                  and one.                                    hmoVr h¡Ÿ&
                  Utility of Probability in Risk Analysis     [añH$ EZm{b{gg _| àmo~o{~{bQ>r H$m Cn`moJ

                      The concept of probability is fundamental   [añH$ EZm{b{gg Q>opŠZH$ _| àmo~o{~{bQ>r Ho$ H$ÝgoßQ>
                  to the use of the risk analysis techniques. The  H$m Cn`moJ _hËdnyU© h¡Ÿ& H¡${nQ>b ~OqQ>J {S>grOZ _|
                  most crucial information for the capital bud-  â`yMa go g§~§{YV H¡$e-âbmoO H$s gyMZm H$m _hËd ~hþV
                  geting decision is forecasting of future cashflows.  A{YH$ h¡Ÿ& nydm©Zw_mZ bJmZo H$m EH$ VarH$m `h h¡ {H$ nyar
                  One way is to forecast a single figure for a pe-
                                                              Ad{Y Ho$ {bE EH$ {\$Ja {ZYm©[aV H$a {b`m OmE {Ogo
                  riod. It is referred as the ‘best estimate’. But a  "~oñQ> EpñQ>_oQ>' H$hVo h¢Ÿ& {H$ÝVw qgJb {\$Ja H$_ {dídgZr`
                  single figure is less reliable because we do not
                  know the chances of this figure actually occur-  hmoVm h¡ Š`m|{H$ ^{dî` _| CgHo$ hmoZo H$s gå^mdZm Ho$ ~mao _|
                  ring. For this reason, the forecasting should not  h_| OmZH$mar Zht hmoVr h¡Ÿ& Bg H$maU ^{dî` g§~§Yr nydm©Zw_mZ
                  be based on a single estimate but there should  {H$gr EH$ EpñQ>_oQ> Ho$ AmYma na Zht bJmE OmZo Mm{hE
                  be a range of associated probability i.e. ‘a prob-  ~pëH$ àmo~o{~{bQ>r H$s EH$ nyar aoÝO hmoZr Mm{hE {Ogo
                  ability distribution’.                      "àmo~o{~{bQ>r {S>ñQ´>rã`yeZ' H$hVo h¢Ÿ&
   465   466   467   468   469   470   471   472   473   474   475