Page 471 - Corporate Finance PDF Final new link
P. 471

BRILLIANT’S     Analysis of Risk and Uncertainty in Investment Decisions          471


                  1. Probability Distribution Approach        1. àmo~o{~{bQ>r {S>ñQ´>rã`yeZ EàmoM
                      The  probability distribution  may be  de-  àmo~o{~{bQ>r {S>ñQ´>rã`yeZ H$mo g§^m{dV H¡$e-âbmo Ho$
                  fined as a set of possible cash flows that may  EH$ goQ> Ho$ ê$n _| n[a^m{fV {H$`m Om gH$Vm h¡ Omo {H$gr
                  occur at a point of time with the probability of  nm°BÝQ> Am°\$ Q>mB_ na h_| àmßV hmo gH$Vm h¡ VWm {OgHo$
                  their occurrence. At the time of estimating cash  gmW CgH$s g§^mdZm ^r Ow‹S>r hm|Ÿ& {H$gr ànmoOb go {H$gr
                  flows resulting from a proposal say, at the end  {ZpíMV g_` CXmhaU Ho$ {bE, 1 df© Ho$ níMmV² {_bZo
                  of year 1, a finance manager may find that he is  dmbo g§^m{dV H¡$e-âbmo H$m {ZYm©aU H$aVo g_` EH$
                  not having a single estimate of cash inflow but  \$m`ZoÝg _¡ZoOa H$mo `h _hgyg hmo gH$Vm h¡ {H$ H¡$e-
                  he has a series of estimation of cash inflows for  âbmo H$m H$moB© qgJb EpñQ>_oQ> hmoZo Ho$ ~Om` CgHo$ g_j
                  that year with the probability of their occur-  gå^m{dV H¡$e-âbmo Ho$ EpñQ>_oeZ H$s {garO d CZH$s
                  rence.                                      àmo~o{~{bQ>r h¡Ÿ&

                                                          n  EVCF
                      Symbolically,                     NPV =    t t   CO
                                                          
                                                          t 1  1 i
                      Where,          NPP
                        NPV = Net Present Value of the proposal,
                        EVCF = Expected Value of Cash Inflows for different years,
                            i = Risk free discount rate,
                          CO = Cash Outflow

                      The expected value of cash inflows may be   ZH$Xr àdmh H$s Ano{jV ‘yë¶ H$mo doQ>oO EdaoO Ho$
                  observed  as weighted  average because  each  ê$n ‘| XoIm Om gH$Vm h¡ ³¶m|{H$ à˶oH$ g§^m{dV H¡$e âbmo
                  possible  cash  flow  is  weighted  by  its  H$mo BgH$s àmo~o{~{bQ>r go doQ>oS> {H$¶m OmVm h¡& Bgo Bg AW©
                  probability. It may also be observed as a long  ‘| b§~o g‘¶ VH$ MbZo dmbo EdaoO Ho$ ê$n ‘| ^r XoIm Om
                  run average in the sense that actual value may  gH$Vm h¡ {H$ dmñV{dH$ ‘yë¶, Ano{jV ‘yë¶ go {^ÝZ hmo
                  be different from expected values.          gH$Vm h¡&
                  Measurement of Risk                         [añH$ H$s _mn
                      While calculating  expected  net  present   H¡${nQ>b ~OqQ>J _| EŠgnoŠQ>oS> ZoQ> àoOoÝQ> d¡ë`y H$s
                  value in  capital budgeting,  risk is  obviously  JUZm H$aVo g_` [añH$ H$mo Ü`mZ _| aIZm Amdí`H$ h¡Ÿ&
                  incorporated. For a better insight into the risk  [añH$ EZm{b{gg H$m ~ohVa T>§J go AZw_mZ bJmZo Ho$ {bE
                  analysis, there are two measures of dispersion  {S>ñng©Z go g§~§{YV Xmo JUZmE± H$s OmVr h¢ Omo [añH$ Ho$
                  which indicates the degree of risk.         ñVa H$mo Xem©Vr h¡…
                  (a) Variance or Standard Deviation : Absolute  (a) d¡[aEÝg `m ñQ>¡ÊS>S>© S>o{dEeZ… [añH$ H$m Eãgm°ë`yQ>
                      measure of risk.                            _mn&
                  (b) Coefficient of Variation : Relative measure  (b) H$mo{\${eEÝQ> Am°\$ d¡[aEeZ: [añH$ H$m [abo{Q>d _mn&
                      of risk.
                                                                             2
                      (a) Variance ( ) or Standard Deviation ():  (a) d¡[aEÝg ( ) `m ñQ>¡ÊS>S>© S>o{dEeZ (): d¡[aEÝg
                                  2
                  Variance  or  standard  deviation  (SD)  is  a  `m ñQ>¡ÊS>S>© S>o{dEeZ (SD) [añH$ H$mo _mnZo H$m g~go gm_mÝ`
   466   467   468   469   470   471   472   473   474   475   476