Page 4 - ALGEBRA STRUCTURE cyclic group BY MIFTAHUL JANNAH (4193311004) MESP2019
P. 4

Thus, it can be concluded that     with respect to the addition operation of modulo 4 numbers forms
                                              4
               a group.

               Let’s investigate the elements that are generator


               Element 0

                                                             −1 1
                                                                       1
               0 = 0                               0 −1  = (0 ) = (0) = 0
                 1
                 2
                                                                       2
                                                             −1 2
               0 = 0 + 0 = 0                       0 −2  = (0 ) = (0) = 0 + 0 = 0
                 3
                                                                       3
                                                             −1 3
               0 = 0 + 0 = 0                       0 −3  = (0 ) = (0) = 0 + 0 + 0 = 0
               ………………..                            ………………..
               ………………..                            ………………..

               ………………..                            ………………..




               {0 |     ∈   } = {0}
                    
               Thus, 0 is not generator.


               Element 1


               1 = 1                               1 −1  = (1 ) = (3) = 3
                 1
                                                                       1
                                                             −1 1
               1 = 1 + 1 = 2                       1 −2  = (1 ) = (3) = 3 + 3 = 2
                                                                       2
                                                             −1 2
                 2
                                                             −1 3
                 3
                                                                       3
               1 = 1 + 1 + 1 = 3                   1 −3  = (1 ) = (3) = 3 + 3 + 3 = 1
               1 = 1 + 1 + 1 + 1 = 0               1 −4  = (1 ) = (3) = 3 + 3 + 3 + 3 = 0
                                                                       4
                 4
                                                             −1 4
                                                             −1 5
                                                                       5
                 5
               1 = 1 + 1 + 1 + 1 + 1 = 1           1 −5  = (1 ) = (3) = 3 + 3 + 3 + 3 + 3 = 3
               ………………..                            ………………..
               ………………..                            ………………..
               ………………..                            ………………..




                             
               < 1 > = {1  |    ∈   } =   
                                         4
               Thus, 1 is generator

                                                                                                            3
   1   2   3   4   5   6   7   8   9