Page 5 - ALGEBRA STRUCTURE cyclic group BY MIFTAHUL JANNAH (4193311004) MESP2019
P. 5

Element 2

                                                                       1
                                                             −1 1
                 1
               2 = 2                               2 −1  = (2 ) = (2) = 2
               2 = 2 + 2 = 4 = 0                   2 −2  = (2 ) = (2) = 2 + 2 = 0
                 2
                                                             −1 2
                                                                       2
                                                                       3
                                                             −1 3
                 3
               2 = 2 + 2 + 2 = 6 = 2               2 −3  = (2 ) = (2) = 2 + 2 + 2 = 2
                                                             −1 4
                                                                       4
                 4
               2 = 2 + 2 + 2 + 2 = 8 = 0           2 −4  = (2 ) = (2) = 2 + 2 + 2 + 2 = 0
                 5
                                                                       5
                                                             −1 5
               2 = 2 + 2 + 2 + 2 + 2 = 10 = 2  2     −5  = (2 ) = (2) = 2 + 2 + 2 + 2 + 2 = 2
               ………………..                            ………………..
               ………………..                            ………………..
               ………………..                            ………………..


                    
               {2 |   ∈   } = {0,2}
               Thus, 2 is not generator


               Element 3


                                                             −1 −1
                 1
               3 = 3                               3 −1  = (3 )    = 1
                                                                       2
               3 = 3 + 3 = 2                       3 −2  = (3 ) = (1) = 1 + 1 = 2
                                                             −1 2
                 2
                                                             −1 3
               3 = 3 + 3 + 3 = 1                   3 −3  = (3 ) = (1) = 1 + 1 + 1 = 3
                 3
                                                                       3
                                                             −1 4
                                                                       4
                 4
               3 = 3 + 3 + 3 + 3 = 0               3 −4  = (3 ) = (1) = 1 + 1 + 1 + 1 = 0
               ………………..                            ………………..
               ………………..                            ………………..

               ………………..                            ………………..

               < 3 > = {3 |    ∈   } =   
                             
                                         4
               So that     is cyclic group
                        4

               Example 2

               Z = Set of integers

               With ordinary addition operation <   , +> is group



                                                                                                            4
   1   2   3   4   5   6   7   8   9   10