Page 226 - NGTU_paper_withoutVideo
P. 226
کیتاموئژ نیون یاهدربراک و اه یروآ نف یلم سنارفنک
[11] Hajj, G. A., Ao, C. O., Iijima, B. A., Kuang, D., Kursinski, E. R., Mannucci, A. J., . & Yunck, T. P. (2004). CHAMP and SAC‐ C
atmospheric occultation results and intercomparisons. Journal of Geophysical Research: Atmospheres, 109(D6).
[12] Nishida, M., Shimizu, A., Tsuda, T., Rocken, C., & Ware, R. H. (2000). Seasonal and longitudinal variations in the tropical
tropopause observed with the GPS occultation technique (GPS/MET). Journal of the Meteorological Society of Japan. Ser.
II, 78(6), 691-700.
[13] Randel, W. J., Wu, F., & Rivera Ríos, W. (2003). Thermal variability of the tropical tropopause region derived from GPS/MET
observations. Journal of Geophysical Research: Atmospheres, 108(D1), ACL-7.
[14] Luntama, J. P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A., Healy, S. & Marquardt, C. (2008). Prospects of the EPS
GRAS mission for operational atmospheric applications. Bulletin of the American Meteorological Society, 89(12), 1863-1876.
[15] Ohring, G., Wielicki, B., Spencer, R., Emery, B., & Datla, R. (2005). Satellite instrument calibration for measuring global climate
change: Report of a workshop. Bulletin of the American Meteorological Society, 86(9), 1303-1314.
[16] Ringer, M. A., & Healy, S. B. (2008). Monitoring twenty‐first century climate using GPS radio occultation bending
angles. Geophysical research letters, 35(5).
[17] Schmidt, T., Wickert, J., Marquardt, C., Beyerle, G., Reigber, C., Galas, R., & König, R. (2004). GPS radio occultation with
CHAMP: an innovative remote sensing method of the atmosphere. Advances in Space Research, 33(7), 1036-1040.
[18] Hajj, G. A., Kursinski, E. R., Romans, L. J., Bertiger, W. I., & Leroy, S. S. (2002). A technical description of atmospheric sounding
by GPS occultation. Journal of Atmospheric and Solar-Terrestrial Physics, 64(4), 451-469.
[19] Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., & Hardy, K. R. (1997). Observing Earth's atmosphere with radio
occultation measurements using the Global Positioning System. Journal of Geophysical Research: Atmospheres, 102(D19),
23429-23465.
[20] Melbourne, W. G., Davis, E. S., Duncan, C. B., Hajj, G. A., Hardy, K. R., Kursinski, E. R.,. & Yunck, T. P. (1994). The application
of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL publication, 147, 94-18.
[21] Rieckh, T. (2013). Tropopause Characteristics from GPS Radio Occultation Data (Doctoral dissertation, Graz).
[22] Foelsche, U., & Kirchengast, G. (2001). Tropospheric water vapor imaging by combination of ground‐based and spaceborne
GNSS sounding data. Journal of Geophysical Research: Atmospheres, 106(D21), 27221-27231.
[23] Wickert, J., Beyerle, G., Schmidt, T., Healy, S. B., Heise, S., Michalak, G., & Rothacher, M. (2006). GPS based atmospheric
sounding with CHAMP: results achieved after four years. In Proceedings of the 2005 EUMETSAT Meteorological Satellite
Conference, Dubrovnik, Croatia.
[24] Pan, L. L., Randel, W. J., Gary, B. L., Mahoney, M. J., & Hintsa, E. J. (2004). Definitions and sharpness of the extratropical
tropopause: A trace gas perspective. Journal of Geophysical Research: Atmospheres, 109(D23).
[25] Hoskins, B. J., McIntyre, M. E., & Robertson, A. W. (1985). On the use and significance of isentropic potential vorticity
maps. Quarterly Journal of the Royal Meteorological Society, 111(470), 877-946.
[26] Davis, C. A., & Emanuel, K. A. (1991). Potential vorticity diagnostics of cyclogenesis. Monthly weather review, 119(8), 1929-
1953.