Page 240 - Algorithms Notes for Professionals
P. 240

Matrix A            Matrix B
       |  g(n)  |          | g(n+1) |
       | g(n-1) |          |  g(n)  |
       | f(n+1) |          | f(n+2) |
       |  f(n)  |          | f(n+1) |


       Here, g(n+1) = 2g(n-1) + f(n+1) and f(n+2) = 2f(n+1) + 2f(n). Now, using the processes stated above, we
       can find the objective matrix M to be:

       | 2 2 1 0 |
       | 1 0 0 0 |
       | 0 0 2 2 |
       | 0 0 1 0 |

       So, these are the basic categories of recurrence relations which are used to solveby this simple technique.








































































       colegiohispanomexicano.net – Algorithms Notes                                                           236
   235   236   237   238   239   240   241   242   243   244   245